增大模型依然有用,DeepMind用2800亿参数的Gopher,测试语言系统极限

简介: 增大模型依然有用,DeepMind用2800亿参数的Gopher,测试语言系统极限

近年来,国内外各大 AI 巨头的大规模语言模型(large language model,LLM)一波接着一波,如 OpenAI 的 GPT-3、智源研究院的悟道 2.0 等。大模型已然成为社区势不可挡的发展趋势。

然而,当前语言模型存在着一些问题,比如逻辑推理较弱。那么,我们是否可以仅通过添加更多数据和算力的情况下改进这些问题呢?或者,我们已经达到了语言模型相关技术范式的极限?

今日,DeepMind「一口气」发表了三篇论文,目的之一就是解决当前语言模型存在的问题。DeepMind  得出的结论是进一步扩展大规模语言模型应该会带来大量的改进。此前在一次电话简报会上,DeepMind 研究科学家 Jack Rae  表示,「这些论文的一个关键发现是大规模语言模型依然在进展之中,能力也在继续增强。这个领域并没有停滞不前。」

image.png


这三篇论文的主题分别如下:

  • 一个具有 2800 亿参数的 transformer 语言模型 Gopher;
  • 语言模型带来的道德和社会风险及危害;
  • 通过检索数万亿 token 来改进语言模型的新方法 RETRO。

本文机器之心将对大模型 Gopher 和 RETRO 模型进行简单介绍。

Gopher:2800 亿参数,接近人类阅读理解能力

DeepMind 用一篇 118 页的论文介绍了全新的语言模型 Gopher 及其 Gopher 家族,论文作者也差不多达到 100 人。

image.png

论文地址:https://storage.googleapis.com/deepmind-media/research/language-research/Training%20Gopher.pdf

在探索语言模型和开发新模型的过程中,DeepMind  探索了 6 个不同大小的 Transformer 语言模型,参数量从 4400 万到 2800 亿不等,架构细节如表 1  所示。其中参数量最大的模型被命名为 Gopher,具有 2800 亿参数,他们并将整个模型集称为 Gopher 家族。这些模型在 152  项不同的任务上进行了评估,在大多数情况下实现了 SOTA 性能。此外,DeepMind  还提供了对训练数据集和模型行为的整体分析,涵盖了模型规模与偏差等。最后,DeepMind 讨论了语言模型在 AI 安全和减轻下游危害方面的应用。

image.png


DeepMind  采用自回归 Transformer 架构为基础,并进行了两处修改:将 LayerNorm 替换为 RMSNorm  ;使用相对位置编码而不是绝对位置编码。此外 DeepMind 使用拥有 32000 个词汇量的 SentencePiece 对文本进行  token 化,并使用字节级 backoff 来支持开放词汇模型。

训练

DeepMind  使用 Adam 优化器,所有模型的训练共有 3000 亿个 token,采用 2048token 上下文窗口方法。在训练的前 1500  step 中,学习率从 10^−7 增加到最大,之后采用 cosine schedule 再将学习率衰减到  1/10。随着模型尺寸的增加,研究者会相应的降低最大学习率并增加每 batch 中的 token 数量,如表 1 所示。

DeepMind 结合了 bfloat16 数字格式来减少内存并增加训练吞吐量。小于 7.1B 的模型使用混合精度 float32 参数和 bfloat16 激活进行训练,而 7.1B 和 280B 使用 bfloat16 激活和参数。

训练基础设施

DeepMind  采用 JAX 来构建训练和评估的代码库。特别地,该研究使用 JAX 的 pmap 转换来提高数据和模型并行性,所有模型的训练和评估是在  TPUv3 芯片上进行的。此外,DeepMind 还采用了优化器状态分区、模型并行性和 rematerialisation  来划分模型状态并减少激活,因此这种方法适合 TPU 内存。

DeepMind  发现 TPUv3 具有快速跨芯片通信的能力,因此数据、模型并行性在 TPUv3 上的开销都很低,并且在训练 Gopher 时仅产生 10%  的开销。因此,该研究发现,在训练规模超过 1024-chip pod 之前,TPU 无需进行 pipelining  操作,这大大简化了中型模型的训练。

image.png


训练数据集

DeepMind 在 MassiveText 上训练 Gopher 模型家族,MassiveText 包括网页、书籍、新闻和代码等文本,包含约 23.5 亿个文档, 10.5 TB 的文本量。表 2 详细列出了该数据集。

image.png


结果

DeepMind 深入调查了这些不同大小模型的优缺点,强调扩展模型会提高其性能——例如,在阅读理解、事实核查和有害语言识别等领域。

该研究在 152 个任务中对 Gopher 及其家族模型进行了性能评估。DeepMind 将这些结果与 SOTA 语言模型(LM 性能的 124 个任务)、使用特定任务数据的监督方法、人类专家性能进行了比较。以下摘取了一些主要结果。

例如,在逻辑推理和常识性任务中的性能比较:

image.png

Gopher 在几个类别上优于之前的工作。

在这项研究中,研究者发现 Gopher 在一些关键任务上的能力超过了当前的语言模型,包括大规模多任务语言理解 (MMLU) 基准。在一项任务上,Gopher 展现出了重大进展,媲美人类专家的水准。

除了对 Gopher 进行定量评价外,DeepMind 的研究者还通过直接互动的方式对模型进行了测验。结果表明,当 Gopher 被提示进行对话互动 (比如在聊天中) 时,该模型有时可以表现出令人惊讶的连贯性。

image.png

在这里,Gopher 可以讨论细胞生物学并提供正确的引用来源,即使此前尚未进行过具体对话的微调。这项研究还详细描述了几种不同模型大小的故障模式,其中包括重复倾向、常规偏见反映以及错误信息传播。

image.png

对语言模型基准测试,DeepMind  在图 2 中扩展了 Gopher 与当前 178B SOTA 模型 Jurassic-1 和 175B GPT-3 的相对性能结果。结果表明  Gopher 在 19 项任务中有 8 项没有超过 SOTA 技术,尤其是在 Ubuntu IRC 和 DM Mathematics  上表现不佳。

image.png

如图 4 所示, Gopher 在绝大多数任务上都表现出了性能提升——只有在 16 个任务上(总共 152 个任务)的性能提升为零。相比之下,在 57 个任务有小幅改进,相对性能提升高达 25%,在 79 个任务有超过 25% 的显着改进。

image.png

这种类型的分析是重要的,理解和记录故障模式可以深入了解大语言模型是如何产生下游危害的,也提示了研究中的缓解方法应该集中在哪些方面来解决这些问题。

RETRO:带有互联网规模检索的高效训练

另一篇论文是 DeepMind 在 Gopher 的基础上,提出了一种改进的语言模型架构。该架构降低了训练的资源成本,并使模型输出更容易追踪到训练语料库中的来源。

论文地址:https://storage.googleapis.com/deepmind-media/research/language-research/Improving%20language%20models%20by%20retrieving.pdf

具体而言,该研究提出了一种检索增强的自回归语言模型  Retrieval-Enhanced Transformer (RETRO)  ,使用互联网规模的检索机制进行预训练。受大脑在学习时依赖专用记忆机制的启发,RETRO 能够有效地查询文本段落以改进其预测。通过将生成的文本与  RETRO 生成所依赖的段落进行比较,可以解释模型做出某些预测的原因以及它们的来源。此外,研究者还发现该模型能够获得与常规  Transformer 相当的性能,参数少一个数量级,并在多个语言建模基准上获得 SOTA 性能。

image.png

该研究设计的检索增强架构能够从具有数万亿个 token 的数据库中检索。为此,该方法对连续 token 块(chunk)进行检索,而非单个 token,这样借助线性因子减少了存储和计算需求。

该方法首先构建了一个键值对(key-value)数据库,其中值存储原始文本 token 块,键是 frozen Bert 嵌入(Devlin et al., 2019)。通过使用 frozen 模型来避免在训练期间定期重新计算整个数据库的嵌入。

然后将每个训练序列分成多个块,这些块通过从数据库中检索到的 K 最近邻进行扩充。编码器 - 解码器架构将检索块集成到模型的预测中,RETRO 的架构如下图所示。

image.png

如下图所示,研究者用实验数据表明该方法能够很好地适应不同的模型大小和数据集大小。

image.png

该研究还在问答任务上评估比较了 RETRO 模型和其他几种模型的性能,结果如下表所示。

image.png

相关文章
|
1月前
|
存储 人工智能 测试技术
小鱼深度评测 | 通义灵码2.0,不仅可跨语言编码,自动生成单元测试,更炸裂的是集成DeepSeek模型且免费使用,太炸裂了。
小鱼深度评测 | 通义灵码2.0,不仅可跨语言编码,自动生成单元测试,更炸裂的是集成DeepSeek模型且免费使用,太炸裂了。
141118 25
小鱼深度评测 | 通义灵码2.0,不仅可跨语言编码,自动生成单元测试,更炸裂的是集成DeepSeek模型且免费使用,太炸裂了。
|
18天前
|
数据可视化 JavaScript 前端开发
从Postman到Apipost:我的动态参数测试实战踩坑记
作为一名全栈开发工程师,在开发用户中心模块时,我遇到了复杂参数API测试的挑战。最初使用Postman时,发现其在生成动态参数(如邮箱、手机号和日期)时存在诸多问题,导致测试效率低下甚至出错。例如,随机生成的邮箱格式无效等 后来,CTO推荐了Apipost,它提供了更智能的参数生成方式:支持真实邮箱、符合规范的手机号以及合法日期范围,极大提升了测试效率和准确性。通过对比,Apipost在处理复杂动态参数方面明显优于Postman,减少了维护成本并提高了团队协作效率。现在,我们已全面切换到Apipost,并利用其「参数组合测试」功能发现了多个边界条件bug。
|
19天前
|
数据可视化 JavaScript 前端开发
利用Postman和Apipost进行API测试的实践与优化-动态参数
在API测试中,Postman和Apipost是常用的工具。Postman内置变量功能有限,面对复杂场景时需编写JavaScript脚本,增加了维护成本。而Apipost提供丰富的内置变量、可视化动态值配置和低代码操作,支持生成真实随机数据,如邮箱、手机号等,显著提升测试效率和灵活性。对于复杂测试场景,Apipost是更好的选择,能有效降低开发与维护成本,提高测试工作的便捷性和可维护性。
|
1月前
|
JSON 前端开发 API
以项目登录接口为例-大前端之开发postman请求接口带token的请求测试-前端开发必学之一-如果要学会联调接口而不是纯写静态前端页面-这个是必学-本文以优雅草蜻蜓Q系统API为实践来演示我们如何带token请求接口-优雅草卓伊凡
以项目登录接口为例-大前端之开发postman请求接口带token的请求测试-前端开发必学之一-如果要学会联调接口而不是纯写静态前端页面-这个是必学-本文以优雅草蜻蜓Q系统API为实践来演示我们如何带token请求接口-优雅草卓伊凡
72 5
以项目登录接口为例-大前端之开发postman请求接口带token的请求测试-前端开发必学之一-如果要学会联调接口而不是纯写静态前端页面-这个是必学-本文以优雅草蜻蜓Q系统API为实践来演示我们如何带token请求接口-优雅草卓伊凡
|
25天前
|
机器学习/深度学习 自然语言处理 API
阿里云零门槛、轻松部署您的专属 DeepSeek模型体验测试
DeepSeek R1是基于Transformer架构的先进大规模深度学习模型,2025年1月20日发布并开源,遵循MIT License。它在自然语言处理等任务上表现出色,高效提取特征,缩短训练时间。阿里云推出的满血版方案解决了服务器压力问题,提供100万免费token,云端部署降低成本,用户可快速启动体验。虽然回答速度有待提升,但整体表现优异,备受关注。
128 8
|
1月前
|
人工智能 IDE 测试技术
用户说 | 通义灵码2.0,跨语言编码+自动生成单元测试+集成DeepSeek模型且免费使用
通义灵码, 作为国内首个 AI 程序员,从最开始的内测到公测,再到通义灵码正式发布第一时间使用,再到后来使用企业定制版的通义灵码,再再再到现在通义灵码2.0,我可以说“用着”通义灵码成长的为数不多的程序员之一了吧。咱闲言少叙,直奔主题!今天,我会聊一聊通义灵码的新功能和通义灵码2.0与1.0的体验感。
|
24天前
|
人工智能 IDE 测试技术
用户说 | 通义灵码2.0,跨语言编码+自动生成单元测试+集成DeepSeek模型且免费使用
用户说 | 通义灵码2.0,跨语言编码+自动生成单元测试+集成DeepSeek模型且免费使用
|
2月前
|
弹性计算 运维 Java
OS-Copilot参数功能全面测试报告
作为一名运维工程师,我主要负责云资源的运维和管理。通过使用OS Copilot的-t/-f/管道功能,我顺利解决了环境快速搭建的问题,例如Tomcat的快速部署。具体步骤包括购买ECS服务器、配置安全组、远程登录并安装OS Copilot。使用-f参数成功安装并启动Tomcat,自动配置JDK,并通过|管道功能验证了生成内容的正确性。整个过程非常流畅,极大提升了工作效率。
63 12
|
2月前
|
JavaScript NoSQL Java
基于SpringBoot+Vue实现的大学生体质测试管理系统设计与实现(系统源码+文档+数据库+部署)
面向大学生毕业选题、开题、任务书、程序设计开发、论文辅导提供一站式服务。主要服务:程序设计开发、代码修改、成品部署、支持定制、论文辅导,助力毕设!
|
3月前
|
Linux Shell 网络安全
Kali Linux系统Metasploit框架利用 HTA 文件进行渗透测试实验
本指南介绍如何利用 HTA 文件和 Metasploit 框架进行渗透测试。通过创建反向 shell、生成 HTA 文件、设置 HTTP 服务器和发送文件,最终实现对目标系统的控制。适用于教育目的,需合法授权。
109 9
Kali Linux系统Metasploit框架利用 HTA 文件进行渗透测试实验

热门文章

最新文章