分布式缓存Redis分区(分片)的高可用方案在大厂中的实践(上)

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 分片,Redis 数据的分布方式,分片就是将数据拆分到多个 Redis 实例,这样每个实例将只是所有键的一个子集。

分片,Redis 数据的分布方式,分片就是将数据拆分到多个 Redis 实例,这样每个实例将只是所有键的一个子集。

1 为什么要分区?

当我们的系统开始用缓存承担大部分读压力,从而缓解db查询压力,在提升性能同时保证系统的稳定性。这时,系统整体架构如下:

image.png

在Web层和DB层间增加了缓存层,请求会首先查询缓存,只有当缓存中没有需要的数据时才会查DB。

这时,就需关注缓存命中率:

缓存命中率 = 命中缓存的请求数 / 总请求数

一般你系统核心缓存的命中率需维持在99%甚至99.9%,哪怕下降1%,系统都会遭受毁灭性打击。

算笔账,假设系统QPS 1w,每次调用会访问10次缓存或DB的数据,则当缓存命中率仅减少1%,DB每s就增加1w * 10 * 1% = 1000次请求。


一般单个MySQL节点读请求峰值QPS就1500左右,增加的这1000次请求很可能会给DB带来毁灭打击。


更不用说缓存节点故障会有多大影响了。图中单点部署的缓存节点就成了整体系统中最大隐患!

那如何解决这个问题,提升缓存可用性?


可部署多个节点,同时让这些节点互为备份。这样,当某节点故障,其备份节点可顶替它继续服务。

这就是分布式缓存的高可用方案。


就需要把数据和请求分散到多台机器,这就需要引入分布式存储。

单点缓存节点受机器内存、网卡带宽和单节点请求量限制,随着请求量和数据量的增加,不能承担更高并发,考虑将数据分片,依照分片算法将数据打散到多个不同节点,每个节点存储部分数据。


这样在某个节点故障的情况下,其他节点也可以提供服务,保证了一定的可用性。这就好比不要把鸡蛋放在同一个篮子里,这样一旦一个篮子掉在地上,摔碎了,别的篮子里还有没摔碎的鸡蛋,不至于一个不剩。

1.1 分布式存储的特性

  • 增强可用性
    如果数据库的某个节点出现故障,在其他节点的数据仍然可用
  • 维护方便
    如果数据库的某个节点出现故障,需要修复数据,只需修复该节点
  • 均衡I/O
    可以把不同的请求映射到各节点以平衡 I/O,改善整个系统性能
  • 改善查询性能
    对分区对象的查询可以仅搜索自己关心的节点,提高检索速度


分布式存储首先要解决把整个数据集按分区规则映射到多个节点的问题,即把数据集划分到多个节点,每个节点负责整体数据的一个子集:

  1. 分片可以让Redis管理更大的内存,Redis将可以使用所有机器的内存。如果没有分区,你最多只能使用一台机器的内存。
  2. 分片使Redis的计算能力通过简单地增加计算机得到成倍提升,Redis的网络带宽也会随着计算机和网卡的增加而成倍增长。

有哪些分片方案?

假设:

  • 有 4 个 Redis 实例 R0,R1,R2,R3
  • 很多表示用户的键,像 user:1,user:2

有如下方案可映射键到指定 Redis 节点。

范围分区(range partitioning)

也叫顺序分区,最简单的分区方式。通过映射对象的范围到指定的 Redis 实例来完成分片。

  • 假设用户从 ID 1 ~ 33 进入实例 R0,34 ~ 66 进入R1

image.png

优点

  • 键值业务相关
  • 可顺序访问
    同一范围内的范围查询不需要跨节点,提升查询速度
  • 支持批量操作

缺点

  • 数据分散度易倾斜
  • 需要一个映射范围到实例的表格。该表需要管理,不同类型的对象都需要一个表,所以范围分片在 Redis 中常常并不可取,因这要比其他分片可选方案低效得多。

产品

  • BigTable
  • HBase
  • MySQL
  • Oracle

2.2 哈希分区(hash partitioning)

传统分布式算法,适于任何键,不必是 object_name:<id> 形式:

  1. 使用一个哈希函数(例如crc32) ,将key转为一个数字,比如93024922
  2. 对该数据进行取模,将其转换为一个 0 到 3 之间数字,该数字即可映射到4个 节点之一。93024922 模 4 等于 2,所以键 foobar 存储到 R2

image.png

2.2.1 分类

2.2.1.1 节点取余分区

4redis节点

image.png

20 个数据

image.png

数据分布

image.png

5redis节点

数据分布

image.png

蓝色表与4个节点时是相同的槽。


可见,redis0只有20命中、redis1只有1命中、redis2只有2命中、redis3只有3命中。最终命中率是: 4/20=20%

  • hash(key) % nodes

image.png

数据迁移

当添加一个节点时

image.png

  • 多倍扩容

image.png

客户端分片:哈希+取余。

节点伸缩:数据节点关系变化,导致数据迁移。迁移数量和添加节点数量有关:建议翻倍扩容。

优点:实现简单

缺点:当扩容或收缩节点时,需要迁移的数据量大(虽然翻倍扩容可以相对减少迁移量)

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
相关文章
|
24天前
|
NoSQL Java Redis
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
Redis分布式锁在高并发场景下是重要的技术手段,但其实现过程中常遇到五大深坑:**原子性问题**、**连接耗尽问题**、**锁过期问题**、**锁失效问题**以及**锁分段问题**。这些问题不仅影响系统的稳定性和性能,还可能导致数据不一致。尼恩在实际项目中总结了这些坑,并提供了详细的解决方案,包括使用Lua脚本保证原子性、设置合理的锁过期时间和使用看门狗机制、以及通过锁分段提升性能。这些经验和技巧对面试和实际开发都有很大帮助,值得深入学习和实践。
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
|
11天前
|
NoSQL 算法 关系型数据库
分布式 ID 详解 ( 5大分布式 ID 生成方案 )
本文详解分布式全局唯一ID及其5种实现方案,关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
分布式 ID 详解 ( 5大分布式 ID 生成方案 )
|
1月前
|
缓存 NoSQL Java
大数据-50 Redis 分布式锁 乐观锁 Watch SETNX Lua Redisson分布式锁 Java实现分布式锁
大数据-50 Redis 分布式锁 乐观锁 Watch SETNX Lua Redisson分布式锁 Java实现分布式锁
55 3
大数据-50 Redis 分布式锁 乐观锁 Watch SETNX Lua Redisson分布式锁 Java实现分布式锁
|
13天前
|
NoSQL 数据处理 Redis
Redis 分区
10月更文挑战第22天
10 1
|
19天前
|
存储 缓存 NoSQL
分布式架构下 Session 共享的方案
【10月更文挑战第15天】在实际应用中,需要根据具体的业务需求、系统架构和性能要求等因素,选择合适的 Session 共享方案。同时,还需要不断地进行优化和调整,以确保系统的稳定性和可靠性。
|
25天前
|
NoSQL Redis 数据库
计数器 分布式锁 redis实现
【10月更文挑战第5天】
44 1
|
29天前
|
NoSQL 算法 关系型数据库
Redis分布式锁
【10月更文挑战第1天】分布式锁用于在多进程环境中保护共享资源,防止并发冲突。通常借助外部系统如Redis或Zookeeper实现。通过`SETNX`命令加锁,并设置过期时间防止死锁。为避免误删他人锁,加锁时附带唯一标识,解锁前验证。面对锁提前过期的问题,可使用守护线程自动续期。在Redis集群中,需考虑主从同步延迟导致的锁丢失问题,Redlock算法可提高锁的可靠性。
69 4
|
28天前
|
SQL NoSQL 安全
分布式环境的分布式锁 - Redlock方案
【10月更文挑战第2天】Redlock方案是一种分布式锁实现,通过在多个独立的Redis实例上加锁来提高容错性和可靠性。客户端需从大多数节点成功加锁且总耗时小于锁的过期时间,才能视为加锁成功。然而,该方案受到分布式专家Martin的质疑,指出其在特定异常情况下(如网络延迟、进程暂停、时钟偏移)可能导致锁失效,影响系统的正确性。Martin建议采用fencing token方案,以确保分布式锁的正确性和安全性。
36 0
|
29天前
|
缓存 NoSQL 算法
面试题:Redis如何实现分布式锁!
面试题:Redis如何实现分布式锁!
|
3月前
|
NoSQL Redis
基于Redis的高可用分布式锁——RedLock
这篇文章介绍了基于Redis的高可用分布式锁RedLock的概念、工作流程、获取和释放锁的方法,以及RedLock相比单机锁在高可用性上的优势,同时指出了其在某些特殊场景下的不足,并提到了ZooKeeper作为另一种实现分布式锁的方案。
103 2
基于Redis的高可用分布式锁——RedLock