数据结构与算法之基数排序

简介: 基数排序(Radix Sort)是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次类推,直到最高位。

常用数据结构与算法实现

以下博客根据B站罗召勇老师视频:数据结构与算法基础-Java版(罗召勇)写的详细笔记


数据结构与算法基础:


数据结构与算法之基础概述


数据结构:


(一)数据结构与算法之数组

(二)数组结构与算法之栈

(三)数据结构与算法之队列

(四)数据结构与算法之链表

(五)数据结构与算法之树结构基础

(六)数据结构与算法之二叉树大全

(七)数据结构与算法之Huffman tree(赫夫曼树 / 霍夫曼树 / 哈夫曼树 / 最优二叉树)

(八)数据结构与算法之多路查找树(2-3树、2-3-4树、B树、B+树)

(九)数据结构与算法之图结构


十大经典算法:


(一)数据结构与算法之冒泡排序(含改进版)

(二)数据结构与算法之选择排序(含改进版)

(三)数据结构与算法之插入排序(含改进版)

(四)数据结构与算法之希尔排序

(五)数据结构与算法之归并排序

(六)数据结构与算法之快速排序

(七)数据结构与算法之堆排序

(八)数据结构与算法之计数排序

(九)数据结构与算法之桶排序

(十)数据结构与算法之基数排序


基数排序概念

基数排序(Radix Sort)是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次类推,直到最高位。有时候有些属性是有优先级顺序的,先按低优先级排序,再按高优先级排序。最后的次序就是高优先级高的在前,高优先级相同的低优先级高的在前


排序步骤:


取得数组中的最大数,并取得位数;

arr为原始数组,从最低位开始取每个位组成radix数组;

对radix进行计数排序(利用计数排序适用于小范围数的特点)

动图展示:

13.gif


静图分析:

image.png



代码实现

import java.util.Arrays;
public class RadixSort {
    public static void main(String[] args) {
        int[] arr = {4, 32, 457, 16, 28, 64};
        radixSort(arr);
//        [32, 4, 64, 16, 457, 28]
//        [4, 16, 28, 32, 457, 64]
//        [4, 16, 28, 32, 64, 457]
    }
    //基数排序
    public static void radixSort(int[] arr) {
        // 定义临时二维数组表示十个桶
        int[][] temp = new int[10][arr.length];
        // 定义一个一维数组,用于记录在temp中相应的数组中存放数字的数量
        int[] counts = new int[10];
        //存数组中最大的数字
        int max = Integer.MIN_VALUE;
        for (int i = 0; i < arr.length; i++) {
            if (arr[i] > max) {
                max = arr[i];
            }
        }
        //计算最大数字是几位数(才能知道排序次数)
        int maxLength = (max + "").length();
        //根据最大长度的数决定比较的次数
        for (int i = 0, n = 1; i < maxLength; i++, n *= 10) {
            //把每一个数字分别计算余数
            for (int j = 0; j < arr.length; j++) {
                //计算余数
                int ys = arr[j] / n % 10;
                //把当前遍历的数据放入指定的数组中
                temp[ys][counts[ys]] = arr[j];
                //记录数量
                counts[ys]++;
            }
            //记录取的元素需要放的位置
            int index = 0;
            //把数字取出来
            for (int k = 0; k < counts.length; k++) {
                //记录数量的数组中,当前余数记录的数量不为0才取
                if (counts[k] != 0) {
                    //循环取出元素
                    for (int l = 0; l < counts[k]; l++) {
                        //取出元素
                        arr[index] = temp[k][l];
                        //记录下一个位置
                        index++;
                    }
                    //把数量置为0
                    counts[k] = 0;
                }
            }
            //打印每次排序后的结果
            System.out.println(Arrays.toString(arr));
        }
    }
}

时间复杂度

最优时间复杂度:O(n^k)

最坏时间复杂度:O(n^k)

稳定性:稳定

初看起来,基数排序的执行效率似乎好的让人无法相信,所有要做的只是把原始数据项从数组复制到链表,然后再复制回去。如果有10个数据项,则有20次复制,对每一位重复一次这个过程。假设对5位的数字排序,就需要20 * 5=100次复制。


*如果有100个数据项,那么就有200 * 5=1000次复制。复制的次数与数据项的个数成正比,即O(n)。这是我们看到的效率最高的排序算法。


不幸的是,数据项越多,就需要更长的关键字,如果数据项增加10倍,那么关键字必须增加一位(多一轮排序)。复制的次数和数据项的个数与关键字长度成正比,可以认为关键字长度是N的对数。因此在大多数情况下,基数排序的执行效率倒退为O(N*logN),和快速排序差不多

相关文章
|
算法 搜索推荐 Python
Python算法——基数排序
Python算法——基数排序
90 1
|
1月前
|
算法 搜索推荐 Java
数据结构与算法学习十三:基数排序,以空间换时间的稳定式排序,速度很快。
基数排序是一种稳定的排序算法,通过将数字按位数切割并分配到不同的桶中,以空间换时间的方式实现快速排序,但占用内存较大,不适合含有负数的数组。
24 0
数据结构与算法学习十三:基数排序,以空间换时间的稳定式排序,速度很快。
|
1月前
|
搜索推荐 Java Go
深入了解基数排序算法
深入了解基数排序算法
31 3
|
4月前
|
算法 搜索推荐 C#
|
5月前
|
算法 C语言
数据结构和算法——桶排序和基数排序(图示、伪代码、多关键字排序,基数排序代码)
数据结构和算法——桶排序和基数排序(图示、伪代码、多关键字排序,基数排序代码)
35 0
|
6月前
|
算法 前端开发
前端算法之基数排序
前端算法之基数排序
43 1
|
6月前
|
搜索推荐 算法 Java
【数据结构排序算法篇】----基数排序【实战演练】
【数据结构排序算法篇】----基数排序【实战演练】
54 3
|
6月前
|
算法 搜索推荐 Java
数据结构与算法面试:基于比较的排序算法时间复杂度最坏情况下是 O(nlogn),请问有没有更快的算法?(提示:计数排序、基数排序)
数据结构与算法面试:基于比较的排序算法时间复杂度最坏情况下是 O(nlogn),请问有没有更快的算法?(提示:计数排序、基数排序)
48 0
|
6月前
|
存储 搜索推荐
常见排序算法原理——第三部分(桶排序、计数排序、基数排序)
常见排序算法原理——第三部分(桶排序、计数排序、基数排序)
|
搜索推荐 算法
深入浅出排序算法之基数排序
深入浅出排序算法之基数排序
下一篇
无影云桌面