330+ 个机器学习模型/库探索工具!Papers With Code 重磅推出!

简介: 330+ 个机器学习模型/库探索工具!Papers With Code 重磅推出!

今天给大家推荐一个硬核干货:一个基于 PyTorch 的图像模型库(PyTorch Image Models,TIMM),用于最新图像分类。


这个库从 330+ 种预训练的最新图像分类模型中进行选择,方便我们使用提供的脚本在 ImageNet 等研究数据集上重新训练模型。而且,可以在自己的数据集上微调预训练的模型,包括最新的前沿模型。


话不多说,直接放上 TIMM 的开源地址:


https://paperswithcode.com/lib/timm


TIMM 包含的模型很丰富,例如:


  • Vision Transformer
  • RexNet
  • CSP DarkNet
  • ResNeSt
  • TResNet
  • RegNetX
  • RegNetY
  • EfficientNet Pruned
  • Big Transfer
  • CSP ResNet


image.png


下面以 Vision Transformer 为例,看看这个库包含了哪些内容!


Vision Transformer 将输入图片拆分成 16x16个patches,每个 patch 做一次线性变换降维同时嵌入位置信息,然后送入 Transformer,避免了像素级 attention 的运算。


https://paperswithcode.com/lib/timm/vision-transformer


image.png

Vision Transformer 支持的模型有 vit_base_patch16_224、vit_base_patch16_384、vit_base_resnet50_384 等等。vit_base_patch16_224 包含的参数为 87 million,FLOPs 为 67 billion,文件大小为 330.25 Mb,训练集为 ImageNet,训练资源为 TPUv3。


详细的训练参数如下:


image.png


作者给出了 Paper 地址:


https://arxiv.org/abs/2010.11929v1


完整代码:


https://github.com/rwightman/pytorch-image-models/blob/5f9aff395c224492e9e44248b15f44b5cc095d9c/timm/models/vision_transformer.py#L503


权重文件:


https://github-releases.githubusercontent.com/168799526/65360900-1a09-11eb-8b86-f0a014a6f156?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIWNJYAX4CSVEH53A%2F20210301%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20210301T142533Z&X-Amz-Expires=300&X-Amz-Signature=dd5f6097d17aa535123ad040855f737354442b69683756b0dcdf8f5fda8da6d8&X-Amz-SignedHeaders=host&actor_id=0&key_id=0&repo_id=168799526&response-content-disposition=attachment%3B%20filename%3Djx_vit_base_p16_224-80ecf9dd.pth&response-content-type=application%2Foctet-stream


如何使用?


导入预训练模型:


import timm
m = timm.create_model('vit_large_patch16_224', pretrained=True)
m.eval()

用你要使用的型号替换型号名称,例如 vit_large_patch16_224。


如何训练模型?


你可以使用 TIMM 的脚本来重新训练新模型,链接:

https://rwightman.github.io/pytorch-image-models/scripts/


结果比较


不同模型在 ImageNet 上测试的结果如下:


image.png


更多精彩的功能还等着大家去挖掘和发现!最后再次放上该库的地址:


https://paperswithcode.com/lib/timm


更多硬核干货,请见阅读原文


相关文章
|
2月前
|
人工智能 JSON 算法
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
阿里云的人工智能平台 PAI,作为一站式、 AI Native 的大模型与 AIGC 工程平台,为开发者和企业客户提供了 Qwen2.5-Coder 系列模型的全链路最佳实践。本文以Qwen2.5-Coder-32B为例,详细介绍在 PAI-QuickStart 完成 Qwen2.5-Coder 的训练、评测和快速部署。
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
|
21天前
|
编解码 机器人 测试技术
技术实践 | 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型快速搭建专业领域知识问答机器人
Qwen2-VL是一款具备高级图像和视频理解能力的多模态模型,支持多种语言,适用于多模态应用开发。通过PAI和LLaMA Factory框架,用户可以轻松微调Qwen2-VL模型,快速构建文旅领域的知识问答机器人。本教程详细介绍了从模型部署、微调到对话测试的全过程,帮助开发者高效实现定制化多模态应用。
|
2月前
|
机器学习/深度学习 PyTorch API
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
Transformer架构自2017年被Vaswani等人提出以来,凭借其核心的注意力机制,已成为AI领域的重大突破。该机制允许模型根据任务需求灵活聚焦于输入的不同部分,极大地增强了对复杂语言和结构的理解能力。起初主要应用于自然语言处理,Transformer迅速扩展至语音识别、计算机视觉等多领域,展现出强大的跨学科应用潜力。然而,随着模型规模的增长,注意力层的高计算复杂度成为发展瓶颈。为此,本文探讨了在PyTorch生态系统中优化注意力层的各种技术,
72 6
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
|
30天前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
48 12
|
2月前
|
机器学习/深度学习 Python
机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况
本文介绍了机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况,而ROC曲线则通过假正率和真正率评估二分类模型性能。文章还提供了Python中的具体实现示例,展示了如何计算和使用这两种工具来评估模型。
63 8
|
2月前
|
机器学习/深度学习 Python
机器学习中模型选择和优化的关键技术——交叉验证与网格搜索
本文深入探讨了机器学习中模型选择和优化的关键技术——交叉验证与网格搜索。介绍了K折交叉验证、留一交叉验证等方法,以及网格搜索的原理和步骤,展示了如何结合两者在Python中实现模型参数的优化,并强调了使用时需注意的计算成本、过拟合风险等问题。
64 6
|
2月前
|
机器学习/深度学习 数据采集 算法
从零到一:构建高效机器学习模型的旅程####
在探索技术深度与广度的征途中,我深刻体会到技术创新既在于理论的飞跃,更在于实践的积累。本文将通过一个具体案例,分享我在构建高效机器学习模型过程中的实战经验,包括数据预处理、特征工程、模型选择与优化等关键环节,旨在为读者提供一个从零开始构建并优化机器学习模型的实用指南。 ####
|
2月前
|
人工智能 边缘计算 JSON
DistilQwen2 蒸馏小模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
本文详细介绍在 PAI 平台使用 DistilQwen2 蒸馏小模型的全链路最佳实践。
|
2月前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的线性回归模型
本文深入探讨了机器学习中广泛使用的线性回归模型,从其基本概念和数学原理出发,逐步引导读者理解模型的构建、训练及评估过程。通过实例分析与代码演示,本文旨在为初学者提供一个清晰的学习路径,帮助他们在实践中更好地应用线性回归模型解决实际问题。
|
2月前
|
机器学习/深度学习 自然语言处理 语音技术
探索机器学习中的深度学习模型:原理与应用
探索机器学习中的深度学习模型:原理与应用
46 0