51 个深度学习目标检测模型汇总,论文、源码一应俱全!

简介: 51 个深度学习目标检测模型汇总,论文、源码一应俱全!


目标检测(Object Detection)是深度学习 CV 领域的一个核心研究领域和重要分支。纵观 2013 年到 2019 年,从最早的 R-CNN、Fast R-CNN 到后来的 YOLO v2、YOLO v3 再到今年的 M2Det,新模型层出不穷,性能也越来越好!本文将会对目标检测近几年的发展和相关论文做出一份系统介绍,总结一份超全的文献 paper 列表。


模型列表先一睹为快!(建议收藏


image.png


这份目标检测超全的技术路线总结来自于 GitHub 上一个知名项目,作者是 Lee hoseong,项目地址是:


https://github.com/hoya012/deep_learning_object_detection


该技术路线横跨时间是 2014 年至 2019 年,上图总结了这期间目标检测所有重要的模型。图中标红的部分是作者认为比较重要,需要重点掌握的模型。当然每个人有都有各自的评价。


模型性能比较


FPS(速度)索引与硬件规格(如 CPU、GPU、RAM 等)有关,因此很难进行同等比较。解决方案是在具有相同规格的硬件上测量所有模型的性能,但这是非常困难和耗时的。比较结果如下:


image.png

image.png


下面举例对标红的重要模型进行介绍!


2014 年


R-CNN


Rich feature hierarchies for accurate object detection and semantic segmentation | Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik | [CVPR' 14]


论文:

https://arxiv.org/pdf/1311.2524.pdf


代码 Caffe:

https://github.com/rbgirshick/rcnn


OverFeat


OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks | Pierre Sermanet, et al. | [ICLR' 14]


论文:

https://arxiv.org/pdf/1312.6229.pdf


代码 Torch:

https://github.com/sermanet/OverFeat


2015 年


Fast R-CNN


Fast R-CNN | Ross Girshick | [ICCV' 15]


论文:

https://arxiv.org/pdf/1504.08083.pdf


代码 caffe:

https://github.com/rbgirshick/fast-rcnn


Faster R-CNN


Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks | Shaoqing Ren, et al. | [NIPS' 15]


论文:

https://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf


代码 caffe:

https://github.com/rbgirshick/py-faster-rcnn


代码 tensorflow:

https://github.com/endernewton/tf-faster-rcnn


代码 pytorch:

https://github.com/jwyang/faster-rcnn.pytorch


2016 年


OHEM


Training Region-based Object Detectors with Online Hard Example Mining | Abhinav Shrivastava, et al. | [CVPR' 16]


论文:

https://arxiv.org/pdf/1604.03540.pdf


代码 caffe:

https://github.com/abhi2610/ohem


YOLO v1


You Only Look Once: Unified, Real-Time Object Detection | Joseph Redmon, et al. | [CVPR' 16]


论文:

https://arxiv.org/pdf/1506.02640.pdf


代码 c:

https://pjreddie.com/darknet/yolo/


SSD


Single Shot MultiBox Detector | Wei Liu, et al. | [ECCV' 16]


论文:

https://arxiv.org/pdf/1512.02325.pdf


代码 caffe:

https://github.com/weiliu89/caffe/tree/ssd


代码 tensorflow:

https://github.com/balancap/SSD-Tensorflow


代码 pytorch:

https://github.com/amdegroot/ssd.pytorch


R-FCN


Object Detection via Region-based Fully Convolutional Networks | Jifeng Dai, et al. | [NIPS' 16]


论文:

https://arxiv.org/pdf/1605.06409.pdf


代码 caffe:

https://github.com/daijifeng001/R-FCN


代码 caffe:

https://github.com/YuwenXiong/py-R-FCN


2017 年


YOLO v2


Better, Faster, Stronger | Joseph Redmon, Ali Farhadi | [CVPR' 17]


论文:

https://arxiv.org/pdf/1612.08242.pdf


代码 c:

https://pjreddie.com/darknet/yolo/


代码 caffe:

https://github.com/quhezheng/caffe_yolo_v2


代码 tensorflow:

https://github.com/nilboy/tensorflow-yolo


代码 tensorflow:

https://github.com/sualab/object-detection-yolov2


代码 pytorch:

https://github.com/longcw/yolo2-pytorch


FPN


Feature Pyramid Networks for Object Detection | Tsung-Yi Lin, et al. | [CVPR' 17]


论文:

http://openaccess.thecvf.com/content_cvpr_2017/papers/Lin_Feature_Pyramid_Networks_CVPR_2017_paper.pdf


代码 caffe:

https://github.com/unsky/FPN


RetinaNet


Focal Loss for Dense Object Detection | Tsung-Yi Lin, et al. | [ICCV' 17]


论文:

https://arxiv.org/pdf/1708.02002.pdf


代码 keras:

https://github.com/fizyr/keras-retinanet


代码 pytorch:

https://github.com/kuangliu/pytorch-retinanet


代码 mxnet:

https://github.com/unsky/RetinaNet


代码 tensorflow:

https://github.com/tensorflow/tpu/tree/master/models/official/retinanet


Mask R-CNN


Kaiming He, et al. | [ICCV' 17]


论文:

http://openaccess.thecvf.com/content_ICCV_2017/papers/He_Mask_R-CNN_ICCV_2017_paper.pdf


代码 caffe2:

https://github.com/facebookresearch/Detectron


代码 tensorflow:

https://github.com/matterport/Mask_RCNN


代码 tensorflow:

https://github.com/CharlesShang/FastMaskRCNN


代码 pytorch:

https://github.com/multimodallearning/pytorch-mask-rcnn


2018 年


YOLO v3


An Incremental Improvement | Joseph Redmon, Ali Farhadi | [arXiv' 18]


论文:

https://pjreddie.com/media/files/papers/YOLOv3.pdf


代码 c:

https://pjreddie.com/darknet/yolo/


代码 pytorch

https://github.com/ayooshkathuria/pytorch-yolo-v3


代码 pytorch:

https://github.com/eriklindernoren/PyTorch-YOLOv3


代码 keras:

https://github.com/qqwweee/keras-yolo3


代码 tensorflow:

https://github.com/mystic123/tensorflow-yolo-v3


RefineDet


Single-Shot Refinement Neural Network for Object Detection | Shifeng Zhang, et al. | [CVPR' 18]


论文:

http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Single-Shot_Refinement_Neural_CVPR_2018_paper.pdf


代码 caffe:

https://github.com/sfzhang15/RefineDet


代码 chainer:

https://github.com/fukatani/RefineDet_chainer


代码 pytorch:

https://github.com/lzx1413/PytorchSSD


2019 年

M2Det


A Single-Shot Object Detector based on Multi-Level Feature Pyramid Network | Qijie Zhao, et al. | [AAAI' 19]


论文:

https://arxiv.org/pdf/1811.04533.pdf


参考文献


该项目的参考文献来自于论文《Deep Learning for Generic Object Detection: A Survey


论文地址:


https://arxiv.org/pdf/1809.02165v1.pdf

相关文章
|
2月前
|
机器学习/深度学习 算法 定位技术
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现裂缝的检测识别(C#代码UI界面版)
本项目基于YOLOv8模型与C#界面,结合Baumer工业相机,实现裂缝的高效检测识别。支持图像、视频及摄像头输入,具备高精度与实时性,适用于桥梁、路面、隧道等多种工业场景。
298 27
|
1月前
|
机器学习/深度学习 数据可视化 算法
深度学习模型结构复杂、参数众多,如何更直观地深入理解你的模型?
深度学习模型虽应用广泛,但其“黑箱”特性导致可解释性不足,尤其在金融、医疗等敏感领域,模型决策逻辑的透明性至关重要。本文聚焦深度学习可解释性中的可视化分析,介绍模型结构、特征、参数及输入激活的可视化方法,帮助理解模型行为、提升透明度,并推动其在关键领域的安全应用。
215 0
|
13天前
|
机器学习/深度学习 存储 PyTorch
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
Neural ODE将神经网络与微分方程结合,用连续思维建模数据演化,突破传统离散层的限制,实现自适应深度与高效连续学习。
52 3
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
|
2月前
|
机器学习/深度学习 人工智能 PyTorch
AI 基础知识从 0.2 到 0.3——构建你的第一个深度学习模型
本文以 MNIST 手写数字识别为切入点,介绍了深度学习的基本原理与实现流程,帮助读者建立起对神经网络建模过程的系统性理解。
300 15
AI 基础知识从 0.2 到 0.3——构建你的第一个深度学习模型
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
AI 基础知识从 0.3 到 0.4——如何选对深度学习模型?
本系列文章从机器学习基础出发,逐步深入至深度学习与Transformer模型,探讨AI关键技术原理及应用。内容涵盖模型架构解析、典型模型对比、预训练与微调策略,并结合Hugging Face平台进行实战演示,适合初学者与开发者系统学习AI核心知识。
280 15
|
2月前
|
机器学习/深度学习 存储 监控
基于深度学习YOLO框架的城市道路损伤检测与评估项目系统【附完整源码+数据集】
本项目基于深度学习的YOLO框架,成功实现了城市道路损伤的自动检测与评估。通过YOLOv8模型,我们能够高效地识别和分类路面裂缝、井盖移位、坑洼路面等常见的道路损伤类型。系统的核心优势在于其高效性和实时性,能够实时监控城市道路,自动标注损伤类型,并生成损伤评估报告。
163 0
基于深度学习YOLO框架的城市道路损伤检测与评估项目系统【附完整源码+数据集】
|
2月前
|
机器学习/深度学习 自动驾驶 算法
基于深度学习的YOLO框架的7种交通场景识别项目系统【附完整源码+数据集】
在智慧交通和智能驾驶日益普及的今天,准确识别复杂交通场景中的关键元素已成为自动驾驶系统的核心能力之一。传统的图像处理技术难以适应高动态、复杂天气、多目标密集的交通环境,而基于深度学习的目标检测算法,尤其是YOLO(You Only Look Once)系列,因其检测速度快、精度高、可部署性强等特点,在交通场景识别中占据了重要地位。
339 0
基于深度学习的YOLO框架的7种交通场景识别项目系统【附完整源码+数据集】
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习模型、算法与应用的全方位解析
深度学习,作为人工智能(AI)的一个重要分支,已经在多个领域产生了革命性的影响。从图像识别到自然语言处理,从语音识别到自动驾驶,深度学习无处不在。本篇博客将深入探讨深度学习的模型、算法及其在各个领域的应用。
461 3
|
8月前
|
机器学习/深度学习 运维 安全
深度学习在安全事件检测中的应用:守护数字世界的利器
深度学习在安全事件检测中的应用:守护数字世界的利器
328 22
|
5月前
|
机器学习/深度学习 编解码 人工智能
计算机视觉五大技术——深度学习在图像处理中的应用
深度学习利用多层神经网络实现人工智能,计算机视觉是其重要应用之一。图像分类通过卷积神经网络(CNN)判断图片类别,如“猫”或“狗”。目标检测不仅识别物体,还确定其位置,R-CNN系列模型逐步优化检测速度与精度。语义分割对图像每个像素分类,FCN开创像素级分类范式,DeepLab等进一步提升细节表现。实例分割结合目标检测与语义分割,Mask R-CNN实现精准实例区分。关键点检测用于人体姿态估计、人脸特征识别等,OpenPose和HRNet等技术推动该领域发展。这些方法在效率与准确性上不断进步,广泛应用于实际场景。
660 64
计算机视觉五大技术——深度学习在图像处理中的应用

热门文章

最新文章