使用 Prometheus + Grafana 监控 k8s 上的 Spring Boot 应用

本文涉及的产品
可观测监控 Prometheus 版,每月50GB免费额度
可观测可视化 Grafana 版,10个用户账号 1个月
简介: 本文主要介绍如何使用 Prometheus 和 Grafana 可视化监控运行在 k8s 上的 Spring Boot 应用,监控指标包括 CPU、内存、线程信息、日志信息、HTTP 请求、JVM 等。

背景

本文主要介绍如何使用 Prometheus 和 Grafana 可视化监控运行在 k8s 上的 Spring Boot 应用,监控指标包括 CPU、内存、线程信息、日志信息、HTTP 请求、JVM 等。


技术方案


技术方案如下图所示:image.png


首先我们需要在 Spring Boot 应用中使用 Spring Boot Actuator 监控应用、暴露指标,并使用 Micrometer Prometheus 将 Actuator 监控指标转换为 Prometheus 格式。

Micrometer 为 Java 平台上的性能数据收集提供了一个通用的 API,类似于 SLF4J ,只不过它关注的不是Logging(日志),而是application metrics(应用指标)。 简而言之,它就是应用监控界的SLF4J。


然后在 k8s 集群中,我们需要通过 Service 对外提供 Spring Boot 应用的指标接口。

Prometheus 是一个开源系统监控和警报工具包,可以采集监控指标,并存储为时间序列数据,Prometheus 还提供了灵活的查询语言 PromQL 来查询数据。Prometheus 通过拉模型采集指标,所以我们需要在 Prometheus 集群中配置服务发现(ServiceMonitor)来定期从应用中抓取指标。


Grafana 是一个开源的可视化分析平台,可以用它创建监控仪表盘、配置告警等。

整体个配置流程如下:

image.png


部署应用

应用配置

pom.xml 中添加如下配置:


<!-- 开启 Spring Boot Actuator --><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-actuator</artifactId></dependency><!-- 将 Actuator 指标转换为 Prometheus 格式 --><dependency><groupId>io.micrometer</groupId><artifactId>micrometer-registry-prometheus</artifactId><version>${micrometer.version}</version></dependency>



然后修改 application.yaml 中添加 Spring Boot Actuator 相关配置:


spring:  application:    name: spring-boot-demo
management:  endpoints:    web:      exposure:        include: "*"    health:      show-details: always
  metrics:    export:      prometheus:        enable: true    tags:      application: spring-boot-demo



至此,应用配置就完成了,可以通过 /actuator/prometheus 接口查看配置是否正确:


$ curl'http://localhost:8080/actuator/prometheus'-i-X GET


返回结果如下所示:


HTTP/1.1 200 OK
Content-Type: text/plain;version=0.0.4;charset=utf-8
Content-Length: 2375# HELP jvm_buffer_memory_used_bytes An estimate of the memory that the Java virtual machine is using for this buffer pool# TYPE jvm_buffer_memory_used_bytes gaugejvm_buffer_memory_used_bytes{id="direct",} 489719.0
jvm_buffer_memory_used_bytes{id="mapped",} 0.0
# HELP jvm_memory_committed_bytes The amount of memory in bytes that is committed for the Java virtual machine to use# TYPE jvm_memory_committed_bytes gaugejvm_memory_committed_bytes{area="heap",id="PS Survivor Space",} 5.1380224E7
jvm_memory_committed_bytes{area="heap",id="PS Old Gen",} 4.86539264E8
jvm_memory_committed_bytes{area="heap",id="PS Eden Space",} 2.11812352E8
jvm_memory_committed_bytes{area="nonheap",id="Metaspace",} 1.62439168E8
jvm_memory_committed_bytes{area="nonheap",id="Code Cache",} 5.4329344E7
jvm_memory_committed_bytes{area="nonheap",id="Compressed Class Space",} 2.4551424E7
# HELP jvm_buffer_total_capacity_bytes An estimate of the total capacity of the buffers in this pool# TYPE jvm_buffer_total_capacity_bytes gaugejvm_buffer_total_capacity_bytes{id="direct",} 489718.0
jvm_buffer_total_capacity_bytes{id="mapped",} 0.0
# HELP jvm_memory_max_bytes The maximum amount of memory in bytes that can be used for memory management# TYPE jvm_memory_max_bytes gaugejvm_memory_max_bytes{area="heap",id="PS Survivor Space",} 5.1380224E7
jvm_memory_max_bytes{area="heap",id="PS Old Gen",} 7.16177408E8
jvm_memory_max_bytes{area="heap",id="PS Eden Space",} 2.31735296E8
jvm_memory_max_bytes{area="nonheap",id="Metaspace",} -1.0
jvm_memory_max_bytes{area="nonheap",id="Code Cache",} 2.5165824E8
jvm_memory_max_bytes{area="nonheap",id="Compressed Class Space",} 1.073741824E9
# HELP jvm_buffer_count_buffers An estimate of the number of buffers in the pool# TYPE jvm_buffer_count_buffers gaugejvm_buffer_count_buffers{id="direct",} 17.0
jvm_buffer_count_buffers{id="mapped",} 0.0
# HELP jvm_memory_used_bytes The amount of used memory# TYPE jvm_memory_used_bytes gaugejvm_memory_used_bytes{area="heap",id="PS Survivor Space",} 5.1139432E7
jvm_memory_used_bytes{area="heap",id="PS Old Gen",} 9.7572216E7
jvm_memory_used_bytes{area="heap",id="PS Eden Space",} 1.47234248E8
jvm_memory_used_bytes{area="nonheap",id="Metaspace",} 1.46403048E8
jvm_memory_used_bytes{area="nonheap",id="Code Cache",} 5.3970112E7
jvm_memory_used_bytes{area="nonheap",id="Compressed Class Space",} 2.1374208E7


配置 Service


因为应用是部署在 k8s 上的,由多个 Pod 组成,所以还需要为 Pod 添加 Service,对外提供 HTTP 服务,这样 Prometheus 才可以抓取监控指标。

在 k8s 中添加类似下面的 Service:

apiVersion: v1
kind: Service
metadata:
  labels:
    app: spring-boot-demo-exporter
  name: spring-boot-demo-exporter
  namespace: default
spec:
  ports:
- name: spring-boot-demo-exporter
      port: 8080      protocol: TCP
      targetPort: 8080  selector:
    app: spring-boot-demo
  type: NodePort

需要注意 spec.selector 需要与 Pod 的标签对应。例如使用 Deployment 部署应用,则需要与 Deployment 的 spec.template.metadata.labels 对应,这样 Service 才能知道对应的 Pod。


配置服务发现

如果使用的是自己部署的 Prometheus 服务,则可以在 prometheus.yml 中添加上 Service 对应的任务,例如:

scrape_configs:
# ...-  job_name: 'spring-boot-demo'# Prometheus 任务名称,自定义     metrics_path: '/actuator/prometheus'# 指标获取路径     scrape_interval: 5s # 抓取指标的间隔时间     static_configs:
- targets: ['spring-boot-demo-exporter:8080'] # 指标访问入口,即 k8s 集群的 Service


如果使用的是云厂商提供的 Prometheus 服务,则需要安装云厂商的规则添加服务发现。如 阿里云 Prometheus 监控 的 ServiceMonitor 配置如下:

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
  name: spring-boot-exporter
  namespace: default
spec:
  endpoints:
- interval: 30s
# Prometheus Exporter 对应的 Path 的值    path: /actuator/prometheus
# service.yaml 中 Prometheus Exporter 对应的 Port 的 Name 字段的值    port: spring-boot-exporter
  namespaceSelector:
    any: true  selector:
    matchLabels:
# service.yaml 的 Label 字段的值以定位目标 service.yaml      app: spring-boot-demo-exporter



配置大盘

Grafana 提供了丰富的大盘模板,可以在其官网搜索合适的大盘导入到自己的 Grafana 监控中。

image.png



我使用的是这两个大盘:



最终效果预览如下:


image.png

Spring Boot 监控

image.png

JVM 监控




总结


至此,基于 Prometheus + Grafana 的 Spring Boot 应用监控系统就创建完成了。接下来还可以使用 Grafana 实现告警,这类就不赘述了。


相关实践学习
深入解析Docker容器化技术
Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。Docker是世界领先的软件容器平台。开发人员利用Docker可以消除协作编码时“在我的机器上可正常工作”的问题。运维人员利用Docker可以在隔离容器中并行运行和管理应用,获得更好的计算密度。企业利用Docker可以构建敏捷的软件交付管道,以更快的速度、更高的安全性和可靠的信誉为Linux和Windows Server应用发布新功能。 在本套课程中,我们将全面的讲解Docker技术栈,从环境安装到容器、镜像操作以及生产环境如何部署开发的微服务应用。本课程由黑马程序员提供。 &nbsp; &nbsp; 相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
目录
相关文章
|
10月前
|
缓存 Kubernetes Docker
GitLab Runner 全面解析:Kubernetes 环境下的应用
GitLab Runner 是 GitLab CI/CD 的核心组件,负责执行由 `.gitlab-ci.yml` 定义的任务。它支持多种执行方式(如 Shell、Docker、Kubernetes),可在不同环境中运行作业。本文详细介绍了 GitLab Runner 的基本概念、功能特点及使用方法,重点探讨了流水线缓存(以 Python 项目为例)和构建镜像的应用,特别是在 Kubernetes 环境中的配置与优化。通过合理配置缓存和镜像构建,能够显著提升 CI/CD 流水线的效率和可靠性,助力开发团队实现持续集成与交付的目标。
|
5月前
|
Prometheus 监控 Cloud Native
Spring Boot 可视化监控
本文介绍了如何通过Spring Actuator、Micrometer、Prometheus和Grafana为Spring Boot应用程序添加监控功能。首先创建了一个Spring Boot应用,并配置了Spring Actuator以暴露健康状态和指标接口。接着,利用Micrometer收集应用性能数据,并通过Prometheus抓取这些数据进行存储。最后,使用Grafana将Prometheus中的数据可视化,展示在精美的仪表板上。整个过程简单易行,为Spring Boot应用提供了基本的监控能力,同时也为后续扩展更详细的监控指标奠定了基础。
1002 2
|
5月前
|
SQL Java 数据库
解决Java Spring Boot应用中MyBatis-Plus查询问题的策略。
保持技能更新是侦探的重要素质。定期回顾最佳实践和新技术。比如,定期查看MyBatis-Plus的更新和社区的最佳做法,这样才能不断提升查询效率和性能。
237 1
|
10月前
|
存储 监控 对象存储
ACK 容器监控存储全面更新:让您的应用运行更稳定、更透明
针对本地存储和 PVC 这两种容器存储使用方式,我们对 ACK 的容器存储监控功能进行了全新升级。此次更新完善了对集群中不同存储类型的监控能力,不仅对之前已有的监控大盘进行了优化,还针对不同的云存储类型,上线了全新的监控大盘,确保用户能够更好地理解和管理容器业务应用的存储资源。
636 274
|
6月前
|
安全 Java API
Spring Boot 功能模块全解析:构建现代Java应用的技术图谱
Spring Boot不是一个单一的工具,而是一个由众多功能模块组成的生态系统。这些模块可以根据应用需求灵活组合,构建从简单的REST API到复杂的微服务系统,再到现代的AI驱动应用。
|
9月前
|
Kubernetes 持续交付 开发工具
阿里云协同万兴科技落地ACK One GitOps方案,全球多机房应用自动化发布,效率提升50%
阿里云协同万兴科技落地ACK One GitOps方案,全球多机房应用自动化发布,效率提升50%
363 2
|
8月前
|
存储 监控 对象存储
ACK 容器监控存储全面更新:让您的应用运行更稳定、更透明
ACK 容器监控存储全面更新:让您的应用运行更稳定、更透明
263 0
ACK 容器监控存储全面更新:让您的应用运行更稳定、更透明
|
9月前
|
存储 监控 对象存储
ACK 容器监控存储全面更新:让您的应用运行更稳定、更透明
ACK 容器监控存储全面更新:让您的应用运行更稳定、更透明
194 1
|
9月前
|
Kubernetes 持续交付 开发工具
阿里云协同万兴科技落地ACK One GitOps方案,全球多机房应用自动化发布,效率提升50%
阿里云协同万兴科技落地ACK One GitOps方案,全球多机房应用自动化发布,效率提升50%
|
10月前
|
存储 监控 对象存储
ACK容器监控存储全面更新:让您的应用运行更稳定、更透明
介绍升级之后的ACK容器监控体系,包括各大盘界面展示和概要介绍。

热门文章

最新文章

推荐镜像

更多