精通Python网络爬虫:核心技术、框架与项目实战.3.3 网页更新策略

简介:

3.3 网页更新策略


一个网站的网页经常会更新,作为爬虫方,在网页更新后,我们则需要对这些网页进行重新爬取,那么什么时候去爬取合适呢?如果网站更新过慢,而爬虫爬取得过于频繁,则必然会增加爬虫及网站服务器的压力,若网站更新较快,但是爬虫爬取的时间间隔较长,则我们爬取的内容版本会过老,不利于新内容的爬取。显然,网站的更新频率与爬虫访问网站的频率越接近,则效果越好,当然,爬虫服务器资源有限的时候,此时爬虫也需要根据对应策略,让不同的网页具有不同的更新优先级,优先级高的网页更新,将获得较快的爬取响应。

具体来说,常见的网页更新策略主要有3种:用户体验策略、历史数据策略、聚类分析策略等,以下我们将分别进行讲解。

在搜索引擎查询某个关键词的时候,会出现一个排名结果,在排名结果中,通常会有大量的网页,但是,大部分用户都只会关注排名靠前的网页,所以,在爬虫服务器资源有限的情况下,爬虫会优先更新排名结果靠前的网页。这种更新策略,我们称之为用户体验策略,那么在这种策略中,爬虫到底何时去爬取这些排名结果靠前的网页呢?此时,爬取中会保留对应网页的多个历史版本,并进行对应分析,依据这多个历史版本的内容更新、搜索质量影响、用户体验等信息,来确定对这些网页的爬取周期。

除此之外,我们还可以使用历史数据策略来确定对网页更新爬取的周期。比如,我们可以依据某一个网页的历史更新数据,通过泊松过程进行建模等手段,预测该网页下一次更新的时间,从而确定下一次对该网页爬取的时间,即确定更新周期。

以上两种策略,都需要历史数据作为依据。有的时候,若一个网页为新网页,则不会有对应的历史数据,并且,如果要依据历史数据进行分析,则需要爬虫服务器保存对应网页的历史版本信息,这无疑给爬虫服务器带来了更多的压力和负担。如果想要解决这些问题,则需要采取新的更新策略。比较常用的是聚类分析策略。那么什么是聚类分析策略呢?

在生活中,相信大家对分类已经非常熟悉,比如我们去商场,商场中的商品一般都分好类了,方便顾客去选购相应的商品,此时,商品分类的类别是固定的,是已经拟定好的。但是,假如商品的数量巨大,事先无法对其进行分类,或者说,根本不知道将会拥有哪些类别的商品,此时,我们应该如何解决将商品归类的问题呢?

这时候我们可以用聚类的方式解决,依据商品之间的共性进行相应分析,将共性较多的商品聚为一类,此时,商品聚集成的类的数目是不一定的,但是能保证的是,聚在一起的商品之间一定有某种共性,即依据“物以类聚”的思想去实现。

同样,在我们的聚类算法中,也会有类似的分析过程。

将聚类分析算法运用在爬虫对网页的更新上,我们可以这样做,如图3-4所示。

 

图3-4 网页更新策略之聚类算法

1)首先,经过大量的研究发现,网页可能具有不同的内容,但是一般来说,具有类似属性的网页,其更新频率类似。这是聚类分析算法运用在爬虫网页的更新上的一个前提指导思想。

2)有了1中的指导思想后,我们可以首先对海量的网页进行聚类分析,在聚类之后,会形成多个类,每个类中的网页具有类似的属性,即一般具有类似的更新频率。

3)聚类完成后,我们可以对同一个聚类中的网页进行抽样,然后求该抽样结果的平均更新值,从而确定对每个聚类的爬行频率。

以上,就是使用爬虫爬取网页的时候,常见的3种更新策略,我们掌握了其算法思想后,在后续我们进行爬虫的实际开发的时候,编写出来的爬虫执行效率会更高,并且执行逻辑会更合理。

相关文章
|
2月前
|
安全 前端开发 数据库
Python 语言结合 Flask 框架来实现一个基础的代购商品管理、用户下单等功能的简易系统
这是一个使用 Python 和 Flask 框架实现的简易代购系统示例,涵盖商品管理、用户注册登录、订单创建及查看等功能。通过 SQLAlchemy 进行数据库操作,支持添加商品、展示详情、库存管理等。用户可注册登录并下单,系统会检查库存并记录订单。此代码仅为参考,实际应用需进一步完善,如增强安全性、集成支付接口、优化界面等。
|
7天前
|
机器学习/深度学习 设计模式 测试技术
Python 高级编程与实战:构建自动化测试框架
本文深入探讨了Python中的自动化测试框架,包括unittest、pytest和nose2,并通过实战项目帮助读者掌握这些技术。文中详细介绍了各框架的基本用法和示例代码,助力开发者快速验证代码正确性,减少手动测试工作量。学习资源推荐包括Python官方文档及Real Python等网站。
|
2月前
|
人工智能 开发者 Python
Chainlit:一个开源的异步Python框架,快速构建生产级对话式 AI 应用
Chainlit 是一个开源的异步 Python 框架,帮助开发者在几分钟内构建可扩展的对话式 AI 或代理应用,支持多种工具和服务集成。
259 9
|
2月前
|
JSON 安全 中间件
Python Web 框架 FastAPI
FastAPI 是一个现代的 Python Web 框架,专为快速构建 API 和在线应用而设计。它凭借速度、简单性和开发人员友好的特性迅速走红。FastAPI 支持自动文档生成、类型提示、数据验证、异步操作和依赖注入等功能,极大提升了开发效率并减少了错误。安装简单,使用 pip 安装 FastAPI 和 uvicorn 即可开始开发。其优点包括高性能、自动数据验证和身份验证支持,但也存在学习曲线和社区资源相对较少的缺点。
137 15
|
2月前
|
关系型数据库 API 数据库
Python流行orm框架对比
Python中有多个流行的ORM框架,如SQLAlchemy、Django ORM、Peewee、Tortoise ORM、Pony ORM、SQLModel和GINO。每个框架各有特点,适用于不同的项目需求。SQLAlchemy功能强大且灵活,适合复杂项目;Django ORM与Django框架无缝集成,易用性强;Peewee轻量级且简单,适合小型项目;Tortoise ORM专为异步框架设计;Pony ORM查询语法直观;SQLModel结合Pydantic,适合FastAPI;GINO则适合异步环境开发。初学者推荐使用Django ORM或Peewee,因其易学易用。
128 4
|
2月前
|
人工智能 分布式计算 大数据
MaxFrame 产品评测:大数据与AI融合的Python分布式计算框架
MaxFrame是阿里云MaxCompute推出的自研Python分布式计算框架,支持大规模数据处理与AI应用。它提供类似Pandas的API,简化开发流程,并兼容多种机器学习库,加速模型训练前的数据准备。MaxFrame融合大数据和AI,提升效率、促进协作、增强创新能力。尽管初次配置稍显复杂,但其强大的功能集、性能优化及开放性使其成为现代企业与研究机构的理想选择。未来有望进一步简化使用门槛并加强社区建设。
112 7
|
3月前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
135 2
|
3月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
95 17
|
3月前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
3月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
67 10