【深度学习入门案例】Senta情感分析

简介: 【深度学习入门案例】Senta情感分析

文章目录

一.前言

二.数据准备

三.数据读取

四.加载预训练模型测试

五.完整源码

一.前言

情感倾向分析(Sentiment Classification,简称Senta)针对带有主观描述的中文文本,可自动判断该文本的情感极性类别并给出相应的置信度,能够帮助企业理解用户消费习惯、分析热点话题和危机舆情监控,为企业提供有利的决策支持。

二.数据准备

创建test.text文档

1.png

三.数据读取

'''
用户想要利用Senta完成对该文件的情感分析预测,只需读入该文件,将文件内容存成list,list中每个元素是待预测句子。
'''
with open("test.txt", 'r') as f:
    try:
        test_text = []
        for line in f:
            test_text.append(line.strip())
    except:
            print('读取失败')
print(test_text)

1.png

四.加载预训练模型测试

import paddlehub as hub
senta = hub.Module(name="senta_bilstm")
#预测
input_dict = {"text": test_text}
results = senta.sentiment_classify(data=input_dict)
for result in results:
    print(result)

返回:

1.png

可以看到判断准确率很高,基本是能准确判断出是积极还是消极的话。

五.完整源码

# coding=gbk
"""
作者:川川
@时间  : 2021/8/29 21:30
群:970353786
"""
'''
用户想要利用Senta完成对该文件的情感分析预测,只需读入该文件,将文件内容存成list,list中每个元素是待预测句子。
'''
with open("test.txt", 'r') as f:
    try:
        test_text = []
        for line in f:
            test_text.append(line.strip())
    except:
            print('读取失败')
print(test_text)
''':cvar
加载预训练模型,如果想尝试其他模型,只需要更换Module中的name参数即可.
'''
import paddlehub as hub
senta = hub.Module(name="senta_bilstm")
#预测
input_dict = {"text": test_text}
results = senta.sentiment_classify(data=input_dict)
for result in results:
    print(result)
相关文章
|
2月前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
1月前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
89 3
|
2月前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)入门
【10月更文挑战第41天】在人工智能的璀璨星空下,卷积神经网络(CNN)如一颗耀眼的新星,照亮了图像处理和视觉识别的路径。本文将深入浅出地介绍CNN的基本概念、核心结构和工作原理,同时提供代码示例,带领初学者轻松步入这一神秘而又充满无限可能的领域。
|
2月前
|
机器学习/深度学习 存储 自然语言处理
使用深度学习模型进行情感分析!!!
本文介绍了如何使用深度学习模型进行中文情感分析。首先导入了必要的库,包括`transformers`、`pandas`、`jieba`和`re`。然后定义了一个`SentimentAnalysis`类,用于处理数据、加载真实标签和评估模型准确性。在主函数中,使用预训练的情感分析模型对处理后的数据进行预测,并计算模型的准确性。
156 0
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
深度学习入门案例:运用神经网络实现价格分类
深度学习入门案例:运用神经网络实现价格分类
|
3月前
|
机器学习/深度学习 自然语言处理 TensorFlow
课外阅读之深度学习如何入门?
课外阅读之深度学习如何入门?
54 0
|
3月前
|
机器学习/深度学习 自然语言处理 算法
深度学习如何入门?
深度学习入门的指南,包括准备基础知识、学习深度学习理论、实践操作、进阶学习、参与社区和不断实践与反思等步骤。
74 0
|
3月前
|
机器学习/深度学习 数据采集 自然语言处理
【NLP自然语言处理】基于PyTorch深度学习框架构建RNN经典案例:构建人名分类器
【NLP自然语言处理】基于PyTorch深度学习框架构建RNN经典案例:构建人名分类器
|
3月前
|
机器学习/深度学习 存储 自然语言处理
深度学习入门:循环神经网络------RNN概述,词嵌入层,循环网络层及案例实践!(万字详解!)
深度学习入门:循环神经网络------RNN概述,词嵌入层,循环网络层及案例实践!(万字详解!)
|
3月前
|
机器学习/深度学习 PyTorch API
深度学习入门:卷积神经网络 | CNN概述,图像基础知识,卷积层,池化层(超详解!!!)
深度学习入门:卷积神经网络 | CNN概述,图像基础知识,卷积层,池化层(超详解!!!)