Nat. Mach. Intel. | 深度学习连提取冷冻电镜图蛋白质动力学信息都搞定了!

本文涉及的产品
公网NAT网关,每月750个小时 15CU
简介: Nat. Mach. Intel. | 深度学习连提取冷冻电镜图蛋白质动力学信息都搞定了!

image.png

今天给大家介绍日本京都大学大学院医学研究科医学部教授Yasushi Okuno团队近期发表在nature machine intelligence上的关于如何利用深度学习技术DEFMap直接提取冷冻电镜密度图中蛋白质动态信息的文章。DEFMap仅使用低温冷冻电镜密度数据,获得了与分子动力学模拟和实验方法数据高度相关的动力学信息。此外,DEFMap成功地检测到与分子识别相关的动力学变化。DEFMap结合了深度学习、实验数据和分子动力学模拟,为蛋白质科学提供一种新的解决方案。


简介


三维结构和动力学信息对于蛋白质功能理解至关重要。低温冷冻电镜(cryo-EM)的单粒子分析技术(SPA)的突破使得研究人员可以对蛋白质的三维结构以原子或接近原子的分辨率进行解析。然而,由于蛋白质靶点较大且结构复杂,利用冷冻电镜分析蛋白质靶点的动力学信息依然富有挑战性。单粒子分析技术采用的样本利用了快速冷冻溶液,蛋白质拥有不同的构象,因此,蛋白质的动力学性质可以隐藏在重建的低温电磁图中。而从重建的3D低温电磁图的局部图强度得到的局部分辨率和原子动力学信息相关联,即较低的局部分辨率对应更灵活的区域。然而,局部分辨率可能会受人为影响,从而使得分析结果不准确。所以作者提出DEFMap,这是一种通过深度学习技术直接提取低温冷冻电镜密度图中与原子波动相关的动力学信息的方法。作者使用全原子分子动力学(MD)模拟和深度神经网络结合构建了一个模型,以根据冷冻电镜密度数据预测动力学信息。通过将结果与MD派生的和实验确定的动力学性质进行比较,并且该模型的性能可以利用未包含在训练数据集中的大分子进行验证。此外,DEFMap可以从单独的cryo-EM图谱中识别与分子识别相关的动力学变化及其伴随的变构效应,而无需进行其他实验(例如MD模拟)。该方法使多个研究领域相结合,例如深度学习,MD仿真和SPA技术,并简化了使用常规技术难以处理的动力学特性的研究。


模型框架


DEFMap利用EMDB和PDB中的大分子进行训练,在原子级进行MD(分子动力学)模拟。在训练数据构建阶段,动力学特性是从MD模拟计算的RMSF值(对于重原子)导出的。在训练阶段,DEFMap中的3D-CNN模型学习不同位置的动力学特征和密度数据之间的关系。在预测阶段,对于未包含在训练数据集中的其他低温冷冻电镜图像,训练模型根据输入密度数据预测动力学值。在这项研究中,25个大分子被用来验证和训练DEFMap模型,另外9个大分子被用来进行动力学预测和进一步的结构分析。具体实验模型和部分实验结果见图一。

image.png

图一:DEFMap,基于低温冷冻电镜图像的动力学特征提取。


总结


这项技术证明了可以从冷冻电镜密度数据中有效地提取与溶液中行为相关的特性,并且开发靶向药物或抗体来抑制例如SARS-CoV-2蛋白HR1基序及其S蛋白近端区域的动态扰动为对抗病毒感染提供了有效策略。另外,DEFMap模型的性能取决于图像分辨率,这可能是由于低分辨率图像会丢失详细的结构信息。对分辨率的依赖性表明,通过开发先进设备(如冷场发射枪)获得更高分辨率图像的不断进步,DEFMap的性能将得到提高。从处理密度数据的角度来看,使用基于局部分辨率锐化的图像训练模型,使数据集属性得到了均匀化,会提高DEFMap的性能。另外,使用其他大分子进行额外的模型训练可以提高模型的准确性和鲁棒性。在未来,DEFMap可能会加速数据驱动的结构研究,旨在了解蛋白质的功能,并制定针对各种疾病分子的靶向治疗策略。本研究将实验数据、深度学习方法和MD模拟相结合,并能从数据中准确提取动力学信息。该策略为实验科学、模拟科学和数据科学的结合提供了一条有效且多学科交叉的研究途径。


数据集


PDB: https://www.rcsb.org/


EMDB: https://www.ebi.ac.uk/pdbe/emdb/


Zenodo: https://doi.org/10.5281/zenodo.4317158


相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
目录
相关文章
|
5月前
|
机器学习/深度学习 数据可视化
【tensorboard】深度学习的日志信息events.out.tfevents文件可视化工具
【tensorboard】深度学习的日志信息events.out.tfevents文件可视化工具
|
2月前
|
机器学习/深度学习
深度学习之蛋白质结构预测
基于深度学习的蛋白质结构预测是利用深度学习模型来预测蛋白质的三维结构,这在生物学和药物研发领域具有重要意义。
99 4
|
6月前
|
机器学习/深度学习 人工智能 算法
利用深度学习技术优化图像识别准确性网络堡垒的构建者:深入网络安全与信息保护策略
【5月更文挑战第28天】 随着人工智能的不断发展,图像识别作为其重要分支之一,在多个领域内得到了广泛应用。然而,识别准确性的提升一直是该领域的研究重点。本文通过引入深度学习技术,构建了一个多层次的卷积神经网络模型,用于提升图像识别的准确性。文中详细阐述了模型的结构设计、训练过程以及参数调优策略,并通过实验验证了所提出方法的有效性。结果表明,与传统图像识别方法相比,深度学习技术能显著提高识别精度,并具有较强的泛化能力。
|
6月前
|
机器学习/深度学习 安全 网络安全
云端防御:云计算环境中的网络安全与信息保护策略深度学习在图像识别中的应用与挑战
【5月更文挑战第31天】 在数字化转型的浪潮中,云计算已成为企业及个人存储和处理数据的首选平台。然而,随着云服务的广泛采用,网络安全威胁也随之增加,使得信息安全成为亟待解决的挑战。本文聚焦于云计算环境特有的安全风险,探讨了多层次、多维度的防御策略,旨在为读者提供一套综合的云安全解决方案蓝图。通过分析当前云服务中的安全缺陷,并提出相应的防护措施,文章不仅强调了技术层面的对策,还涉及了管理与合规性方面的重要性。
|
机器学习/深度学习 人工智能 自然语言处理
深度学习应用篇-自然语言处理[10]:N-Gram、SimCSE介绍,更多技术:数据增强、智能标注、多分类算法、文本信息抽取、多模态信息抽取、模型压缩算法等
深度学习应用篇-自然语言处理[10]:N-Gram、SimCSE介绍,更多技术:数据增强、智能标注、多分类算法、文本信息抽取、多模态信息抽取、模型压缩算法等
|
机器学习/深度学习 存储 人工智能
深度学习进阶篇7:Transformer模型长输入序列、广义注意力、FAVOR+快速注意力、蛋白质序列建模实操。
深度学习进阶篇7:Transformer模型长输入序列、广义注意力、FAVOR+快速注意力、蛋白质序列建模实操。
深度学习进阶篇7:Transformer模型长输入序列、广义注意力、FAVOR+快速注意力、蛋白质序列建模实操。
|
机器学习/深度学习 资源调度 自然语言处理
深度学习进阶篇-国内预训练模型[6]:ERNIE-Doc、THU-ERNIE、K-Encoder融合文本信息和KG知识;原理和模型结构详解。
深度学习进阶篇-国内预训练模型[6]:ERNIE-Doc、THU-ERNIE、K-Encoder融合文本信息和KG知识;原理和模型结构详解。
11386 0
深度学习进阶篇-国内预训练模型[6]:ERNIE-Doc、THU-ERNIE、K-Encoder融合文本信息和KG知识;原理和模型结构详解。
|
机器学习/深度学习 人工智能 自然语言处理
人工智能知识图谱之信息抽取:基于Labelstudio的UIE半监督深度学习的智能标注方案(云端版),提效。
人工智能知识图谱之信息抽取:基于Labelstudio的UIE半监督深度学习的智能标注方案(云端版),提效。
|
机器学习/深度学习 算法 测试技术
科学家使用Summit超级计算机和深度学习来预测基因组规模的蛋白质功能
科学家使用Summit超级计算机和深度学习来预测基因组规模的蛋白质功能
164 0
|
机器学习/深度学习 异构计算
深度学习预测蛋白质-蛋白质相互作用
深度学习预测蛋白质-蛋白质相互作用
107 0