未来的移动通信网络,6G与人工智能的融合

简介: 在最近的几十年中,移动通信网络从1G发展到6G,通信关键技术层出不穷、迅速发展,广泛应用在人类社会的各行各业,成为社会信息化变革的重要支撑。

为了能够满足未来6G网络更加丰富的业务应用以及极致的性能需求,需要在现有的新型无线网络架构基础上,实现关键技术上的重要突破。而随着人工智能(AI)的深入应用,如何实现AI赋能新型无线网络架构,也是一个研究热点。

现有的无线网络架构不具备支持AI原生的能力,缺少原生AI算法的运行环境和基础插件。此外,随着新型垂直行业应用的井喷式涌现,无线网络资源利用率低、业务匹配性差,差异化实时性业务需求引起资源管控复杂度的急剧提升。未来,AI技术将赋能移动通信系统,通过与无线架构、无线数据、无线算法和无线应用结合,构建新型智能网络架构体系。AI原生的6G网络不仅仅是将AI技术作为一种优化工具,而是实现AI原生的新型无线网络架构和空口技术。

AI原生的6G网络通过赋能网络架构,实现接入网和核心网网元的智能化管理和部署实现,支持智能的多类型资源跨域管理。而AI原生的新空口技术能够通过调用AI算法支持无线资源的智能调度,实现实时的业务需求匹配,将AI需求考虑在接口协议栈的设计中。

bf3cab7fc224377eec94ea890f0bf09d.jpg

1.AI原生的新型无线网络架构
AI原生的新型无线网络架构,要充分利用网络节点之间的通信、计算和感知能力,通过分布式学习、群智式协同以及云边端一体化算法部署,使得6G网络原生支持各类人工智能应用,能够构建新的网络生态,并实现以新型网络使用者为中心的业务体验。利用原生的AI能力,6G可以更好地对无处不在的具有智慧感知、通信和计算能力的网络、基站和终端进行统筹管理,利用大规模的智能分布式协同服务,使网络中的通信和算力效用最大化。

这将会带来三点趋势的转变:①AI将会融入到6G网络中,并对外提供服务,将创造新的市场价值,即AI引擎,利用AI引擎的智能化能力,可以对外提供智能管控等服务;②AI将在端-雾-云间协同实现包括通信能力、计算、存储等多种类型、多种维度资源的智能调度,并使网络总体效能得到提升;③AI能够实现对6G中广域的数据测量与监控,实现网络的快速自动化运维、快速检测和快速自修复,即AI原生的网络维护。

2.支持AI引擎的无线智能管控
长期以来,基于数值迭代优化的解决方案在无线通信、信号处理任务之中发挥了重要作用。在迭代算法中,需要优化的问题参数作为迭代算法的输入,多次迭代后的结果是迭代算法的输出结果。在6G中,需要优化的问题规模通常比较大,使用迭代优化算法往往会使计算复杂度非常高,无法满足资源调度的实时性要求。而深度神经网络具有黑箱式强大的函数逼近能力,其能够在接近迭代优化算法性能的同时不会造成过高的计算复杂度。

如何利用神经网络实现智能化的无线网络资源管理是一个值得研究的问题。首先,需要设计出一种针对某一类无线资源管理问题的迭代资源优化算法;对神经网络进行设计,设计时可以巧妙利用迭代优化算法的特点来对神经网络网络的参数进行设置,具体来说,就是可以将迭代优化算法的输入参数作为神经网络的输入参数,而迭代优化算法的输出结果将作为神经网络的输出结果;对于单独不同的问题实例,可以使用迭代资源优化算法计算得到最优的资源管理策略作为参考结果,从而形成训练样本集;选择损失函数,利用训练样本集进行训练神经网络可以得到网络模型;当遇到新的问题实例时,可以利用神经网络模型计算资源管理策略。

利用上述设计思路,可以求解几乎所有无线资源优化问题,同时可以较为有效地提升在进行资源分配策略时的计算速度并节省计算开销。当在进行神经网络类型选择时,除了一般的前馈神经网络,也可以考虑诸如卷积神经网络或图神经网络等,后者已被证明能够有效求解整数规划问题。而在进行神经网络设计时,一般无线资源优化问题的目标函数通常是系统效用,如系统频效、能效等。因此,对于面向无线资源智能管理所使用的神经网络,除了可以选均方误差函数作为神经网络的损失函数,也可以直接使用系统效用函数作为神经网络的损失函数;还可以利用无线资源优化问题的最优解结构,将算法的先验信息融入到神经网络设计中,从而达到简化神经网络的输入输出设计,这样不仅可以加速神经网络训练速度,而且同时能够极大提高神经网络逼近迭代算法的能力。

3.AI原生的新型空口
AI赋能的新型协议栈,即深度融合AI、机器学习技术,突破了现有空口的模块化设计的框架,实现无线环境、资源、干扰以及业务等多维特性的深度挖掘和利用,将会显著提高6G无线网络的效率、可靠性、实时性和安全性。

新型空口技术可以通过端到端的学习来增强数据平面和控制信令的连通性、效率和可靠性,允许针对特定场景在深度感知和预测的基础上进行定制,且空口技术的组成模块可以灵活地进行拼接,以满足各种应用场景的不同要求。借助多智能体等AI方法,可以使通信的参与者之间高效协同,提高通信传输能效。利用数据和深度神经网络的黑盒建模能力可以从无线数据中挖掘并重构未知的物理信道,从而设计最优的传输方式,提高频谱利用率。

AI赋能的通信系统能够根据流量和用户行为主动调整无线传输格式和通信动作,可以优化并降低通信收发两端的功耗,对6G网络中功率进行智能管控。在多用户系统中,通过强化学习等AI技术,基站与用户之间可自动协调并调度资源。每个节点可计算每次传输的反馈,以调整其信号的波束方向,进行AI使能的波束赋形等。


本文转载自51CTO,本文一切观点和机器智能技术圈子无关。原文链接
免费体验百种AI能力以及试用热门离线SDK:【点此跳转】

目录
相关文章
|
5月前
|
机器学习/深度学习 自然语言处理 数据可视化
基于图神经网络的自然语言处理:融合LangGraph与大型概念模型的情感分析实践
本文探讨了在企业数字化转型中,大型概念模型(LCMs)与图神经网络结合处理非结构化文本数据的技术方案。LCMs突破传统词汇级处理局限,以概念级语义理解为核心,增强情感分析、实体识别和主题建模能力。通过构建基于LangGraph的混合符号-语义处理管道,整合符号方法的结构化优势与语义方法的理解深度,实现精准的文本分析。具体应用中,该架构通过预处理、图构建、嵌入生成及GNN推理等模块,完成客户反馈的情感分类与主题聚类。最终,LangGraph工作流编排确保各模块高效协作,为企业提供可解释性强、业务价值高的分析结果。此技术融合为挖掘非结构化数据价值、支持数据驱动决策提供了创新路径。
291 6
基于图神经网络的自然语言处理:融合LangGraph与大型概念模型的情感分析实践
|
3月前
|
机器学习/深度学习 数据采集 算法
贝叶斯状态空间神经网络:融合概率推理和状态空间实现高精度预测和可解释性
本文将BSSNN扩展至反向推理任务,即预测X∣y,这种设计使得模型不仅能够预测结果,还能够探索特定结果对应的输入特征组合。在二元分类任务中,这种反向推理能力有助于识别导致正负类结果的关键因素,从而显著提升模型的可解释性和决策支持能力。
222 42
贝叶斯状态空间神经网络:融合概率推理和状态空间实现高精度预测和可解释性
|
Ubuntu 网络协议 Unix
02理解网络IO:实现服务与客户端通信
网络IO指客户端与服务端通过网络进行数据收发的过程,常见于微信、QQ等应用。本文详解如何用C语言实现一个支持多客户端连接的TCP服务端,涉及socket编程、线程处理及通信流程,并分析“一消息一线程”模式的优缺点。
190 0
|
4月前
|
机器学习/深度学习 人工智能 算法
人机融合智能 | 以人为中心人工智能新理念
本文探讨了“以人为中心的人工智能”(HCAI)理念,强调将人的需求、价值和能力置于AI设计与开发的核心。HCAI旨在确保AI技术服务于人类,增强而非取代人类能力,避免潜在危害。文章分析了AI的双刃剑效应及其社会挑战,并提出了HCAI的设计目标与实施路径,涵盖技术、用户和伦理三大维度。通过系统化方法,HCAI可推动AI的安全与可持续发展,为国内外相关研究提供重要参考。
240 3
|
7月前
|
机器学习/深度学习 测试技术 网络架构
FANformer:融合傅里叶分析网络的大语言模型基础架构
近期大语言模型(LLM)的基准测试结果显示,OpenAI的GPT-4.5在某些关键评测中表现不如规模较小的模型,如DeepSeek-V3。这引发了对现有LLM架构扩展性的思考。研究人员提出了FANformer架构,通过将傅里叶分析网络整合到Transformer的注意力机制中,显著提升了模型性能。实验表明,FANformer在处理周期性模式和数学推理任务上表现出色,仅用较少参数和训练数据即可超越传统Transformer。这一创新为解决LLM扩展性挑战提供了新方向。
177 5
FANformer:融合傅里叶分析网络的大语言模型基础架构
|
7月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
386 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
8月前
|
canal 编解码 运维
飞天洛神云网络再度入选通信顶会 SIGCOMM'24
飞天洛神云网络再度入选通信顶会 SIGCOMM'24
245 12
|
8月前
|
人工智能
云工开物合作动态丨中央美术学院与阿里云签约,推动人工智能和艺术与设计学科融合发展
2024年12月8日,中央美术学院与阿里云在厦门签署合作协议,双方将结合艺术与技术优势,在人工智能与艺术交叉学科的课程共建、学生实践等方面展开合作。阿里云通过“云工开物”计划提供算力资源和PAI ArtLab平台,助力师生高效创作,推动艺术与设计类人才培养新模式的探索。
|
8月前
|
人工智能 自然语言处理 决策智能
智能体竟能自行组建通信网络,还能自创协议提升通信效率
《一种适用于大型语言模型网络的可扩展通信协议》提出创新协议Agora,解决多智能体系统中的“通信三难困境”,即异构性、通用性和成本问题。Agora通过标准协议、结构化数据和自然语言三种通信格式,实现高效协作,支持复杂任务自动化。演示场景显示其在预订服务和天气预报等应用中的优越性能。论文地址:https://arxiv.org/pdf/2410.11905。
223 6
|
8月前
|
人工智能 监控 物联网
写在2025 MWC前夕:AI与移动网络融合的“奇点时刻”
2025年MWC前夕,AI与移动网络融合迎来“奇点时刻”。上海东方医院通过“思维链提示”快速诊断罕见病,某金融机构借助AI识别新型欺诈模式,均展示了AI在推理和学习上的飞跃。5G-A时代,低时延、大带宽特性支持端云协同,推动多模态AI感知能力提升,数字孪生技术打通物理与数字世界,助力各行业智能化转型。AI赋能移动网络,实现智能动态节能和优化用户体验,预示着更聪明、绿色、高效的未来。
124 1

热门文章

最新文章