未来的移动通信网络,6G与人工智能的融合

简介: 在最近的几十年中,移动通信网络从1G发展到6G,通信关键技术层出不穷、迅速发展,广泛应用在人类社会的各行各业,成为社会信息化变革的重要支撑。

为了能够满足未来6G网络更加丰富的业务应用以及极致的性能需求,需要在现有的新型无线网络架构基础上,实现关键技术上的重要突破。而随着人工智能(AI)的深入应用,如何实现AI赋能新型无线网络架构,也是一个研究热点。

现有的无线网络架构不具备支持AI原生的能力,缺少原生AI算法的运行环境和基础插件。此外,随着新型垂直行业应用的井喷式涌现,无线网络资源利用率低、业务匹配性差,差异化实时性业务需求引起资源管控复杂度的急剧提升。未来,AI技术将赋能移动通信系统,通过与无线架构、无线数据、无线算法和无线应用结合,构建新型智能网络架构体系。AI原生的6G网络不仅仅是将AI技术作为一种优化工具,而是实现AI原生的新型无线网络架构和空口技术。

AI原生的6G网络通过赋能网络架构,实现接入网和核心网网元的智能化管理和部署实现,支持智能的多类型资源跨域管理。而AI原生的新空口技术能够通过调用AI算法支持无线资源的智能调度,实现实时的业务需求匹配,将AI需求考虑在接口协议栈的设计中。

bf3cab7fc224377eec94ea890f0bf09d.jpg

1.AI原生的新型无线网络架构
AI原生的新型无线网络架构,要充分利用网络节点之间的通信、计算和感知能力,通过分布式学习、群智式协同以及云边端一体化算法部署,使得6G网络原生支持各类人工智能应用,能够构建新的网络生态,并实现以新型网络使用者为中心的业务体验。利用原生的AI能力,6G可以更好地对无处不在的具有智慧感知、通信和计算能力的网络、基站和终端进行统筹管理,利用大规模的智能分布式协同服务,使网络中的通信和算力效用最大化。

这将会带来三点趋势的转变:①AI将会融入到6G网络中,并对外提供服务,将创造新的市场价值,即AI引擎,利用AI引擎的智能化能力,可以对外提供智能管控等服务;②AI将在端-雾-云间协同实现包括通信能力、计算、存储等多种类型、多种维度资源的智能调度,并使网络总体效能得到提升;③AI能够实现对6G中广域的数据测量与监控,实现网络的快速自动化运维、快速检测和快速自修复,即AI原生的网络维护。

2.支持AI引擎的无线智能管控
长期以来,基于数值迭代优化的解决方案在无线通信、信号处理任务之中发挥了重要作用。在迭代算法中,需要优化的问题参数作为迭代算法的输入,多次迭代后的结果是迭代算法的输出结果。在6G中,需要优化的问题规模通常比较大,使用迭代优化算法往往会使计算复杂度非常高,无法满足资源调度的实时性要求。而深度神经网络具有黑箱式强大的函数逼近能力,其能够在接近迭代优化算法性能的同时不会造成过高的计算复杂度。

如何利用神经网络实现智能化的无线网络资源管理是一个值得研究的问题。首先,需要设计出一种针对某一类无线资源管理问题的迭代资源优化算法;对神经网络进行设计,设计时可以巧妙利用迭代优化算法的特点来对神经网络网络的参数进行设置,具体来说,就是可以将迭代优化算法的输入参数作为神经网络的输入参数,而迭代优化算法的输出结果将作为神经网络的输出结果;对于单独不同的问题实例,可以使用迭代资源优化算法计算得到最优的资源管理策略作为参考结果,从而形成训练样本集;选择损失函数,利用训练样本集进行训练神经网络可以得到网络模型;当遇到新的问题实例时,可以利用神经网络模型计算资源管理策略。

利用上述设计思路,可以求解几乎所有无线资源优化问题,同时可以较为有效地提升在进行资源分配策略时的计算速度并节省计算开销。当在进行神经网络类型选择时,除了一般的前馈神经网络,也可以考虑诸如卷积神经网络或图神经网络等,后者已被证明能够有效求解整数规划问题。而在进行神经网络设计时,一般无线资源优化问题的目标函数通常是系统效用,如系统频效、能效等。因此,对于面向无线资源智能管理所使用的神经网络,除了可以选均方误差函数作为神经网络的损失函数,也可以直接使用系统效用函数作为神经网络的损失函数;还可以利用无线资源优化问题的最优解结构,将算法的先验信息融入到神经网络设计中,从而达到简化神经网络的输入输出设计,这样不仅可以加速神经网络训练速度,而且同时能够极大提高神经网络逼近迭代算法的能力。

3.AI原生的新型空口
AI赋能的新型协议栈,即深度融合AI、机器学习技术,突破了现有空口的模块化设计的框架,实现无线环境、资源、干扰以及业务等多维特性的深度挖掘和利用,将会显著提高6G无线网络的效率、可靠性、实时性和安全性。

新型空口技术可以通过端到端的学习来增强数据平面和控制信令的连通性、效率和可靠性,允许针对特定场景在深度感知和预测的基础上进行定制,且空口技术的组成模块可以灵活地进行拼接,以满足各种应用场景的不同要求。借助多智能体等AI方法,可以使通信的参与者之间高效协同,提高通信传输能效。利用数据和深度神经网络的黑盒建模能力可以从无线数据中挖掘并重构未知的物理信道,从而设计最优的传输方式,提高频谱利用率。

AI赋能的通信系统能够根据流量和用户行为主动调整无线传输格式和通信动作,可以优化并降低通信收发两端的功耗,对6G网络中功率进行智能管控。在多用户系统中,通过强化学习等AI技术,基站与用户之间可自动协调并调度资源。每个节点可计算每次传输的反馈,以调整其信号的波束方向,进行AI使能的波束赋形等。


本文转载自51CTO,本文一切观点和机器智能技术圈子无关。原文链接
免费体验百种AI能力以及试用热门离线SDK:【点此跳转】

目录
相关文章
|
3天前
|
机器学习/深度学习 人工智能 算法
探索人工智能与大数据的融合之道####
— 本文旨在探讨人工智能(AI)与大数据如何协同工作,以推动技术创新和产业升级。通过分析二者的基本概念、核心技术及应用场景,揭示它们相互促进的内在机制,并展望未来发展趋势。文章指出,AI提供了智能化处理数据的能力,而大数据则为AI提供了海量的训练资源,两者结合将开启无限可能。 ####
|
4天前
|
人工智能 监控 物联网
深度探索人工智能与物联网的融合:构建未来智能生态系统###
在当今这个数据驱动的时代,人工智能(AI)与物联网(IoT)的深度融合正引领着一场前所未有的技术革命。本文旨在深入剖析这一融合背后的技术原理、探讨其在不同领域的应用实例及面临的挑战与机遇,为读者描绘一幅关于未来智能生态系统的宏伟蓝图。通过技术创新的视角,我们不仅揭示了AI与IoT结合的强大潜力,也展望了它们如何共同塑造一个更加高效、可持续且互联的世界。 ###
|
4天前
|
存储 安全 网络安全
云计算与网络安全的融合之路
【10月更文挑战第38天】在数字化浪潮中,云计算和网络安全是推动现代企业前进的两个关键因素。本文深入探讨了云计算服务如何影响网络安全策略,并提供了加强云环境下信息安全的实际措施。文章首先概述了云计算的基本概念及其带来的安全挑战,随后分析了当前网络安全的主要威胁,并提出了相应的防护对策。最后,通过一个代码示例,展示了如何在云环境中实现数据加密,以增强信息的安全性。
|
4天前
|
云安全 安全 网络安全
云计算与网络安全:技术融合的未来之路
【10月更文挑战第38天】 在数字化浪潮中,云计算和网络安全成为支撑现代企业和个人数据安全的两大基石。本文将深入探讨云计算服务如何与网络安全技术相结合,保障信息安全,并分析面临的挑战及未来发展趋势。我们将通过实际案例,揭示云安全的最佳实践,为读者提供一条清晰的技术融合路径。
|
5天前
|
安全 网络安全 数据库
云计算与网络安全:技术融合的未来之路
【10月更文挑战第37天】本文将探讨云计算与网络安全的交汇点,揭示它们如何共同塑造信息安全的未来。我们将深入了解云服务的核心组件、网络安全的关键策略以及两者如何相互增强。通过分析当前的挑战和未来的趋势,本文旨在为读者提供一条清晰的路径,以理解并应对这一不断发展的技术领域。
|
5天前
|
机器学习/深度学习 人工智能 算法
人工智能与机器学习的融合之旅
【10月更文挑战第37天】本文将探讨AI和机器学习如何相互交织,共同推动技术发展的边界。我们将深入分析这两个概念,了解它们是如何互相影响,以及这种融合如何塑造我们的未来。文章不仅会揭示AI和机器学习之间的联系,还会通过实际案例展示它们如何协同工作,以解决现实世界的问题。
|
7天前
|
传感器 自动驾驶 物联网
探秘 5G 核心网络之 5G RAN:开启高速通信新时代
探秘 5G 核心网络之 5G RAN:开启高速通信新时代
28 4
|
4天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
21 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
7天前
|
存储 安全 网络安全
云计算与网络安全:技术融合与挑战
【10月更文挑战第35天】本文将探讨云计算与网络安全的交叉点,包括云服务、网络安全和信息安全等技术领域。我们将深入了解云计算的基本概念,以及如何通过云服务实现网络安全和信息安全。同时,我们还将讨论云计算面临的安全挑战,并提出相应的解决方案。最后,我们将通过代码示例展示如何在云计算环境中实现网络安全和信息安全。
21 3
|
10天前
|
存储 安全 网络安全
云计算与网络安全的融合之路
【10月更文挑战第32天】随着云计算技术的飞速发展,越来越多的企业和个人选择将数据和应用程序迁移到云端。然而,云服务的安全性问题也日益凸显。本文将从云服务的分类、特点出发,探讨如何保障云环境下的网络安全和信息安全。通过分析常见的网络威胁和攻击手段,提出相应的防护策略和建议,旨在为读者提供一条云计算与网络安全融合的实践路径。