七牛云智能运维新品发布,何以成为行业颠覆性创新?

简介: 七牛云智能运维新品发布,何以成为行业颠覆性创新?

2021年7月9日,国内领先的企业级云服务商七牛云在上海举办新品发布会,发布其智能运维产品PISA。

PISA,即Pandora Intelligent Service Analysis,是基于七牛云的机器数据分析平台Pandora开发的智能服务分析工具。七牛云将PISA定义为Pandora上的全新应用,可见其对行业及七牛云本身的意义非同小可。

Pandora是七牛云推出的云原生的机器数据分析平台,通过平台和AI算法能力共同提供探索数据价值的核心能力,PISA是这个核心能力在智能运维领域的落地应用。通过PISA,Pandora的能力被充分地利用并开放给开发者,使得运维开发人员能够更加简单直接地根据自身业务场景灵活使用Pandora各项能力。

分析能力的开放是如何实现的?从架构上来说,PISA分为底、中、上三层。底层以Pandora 核心计算引擎为基础,输出强大、稳定、高性能、低成本的计算能力。中层依靠Pandora 开放平台,为开发者提供丰富、开放、易用的支撑功能。上层是应用层,依托七牛云丰富的AIOps 经验落地智能运维服务的应用,帮助最终用户灵活应对不同业务和IT运维分析场景。

yy.png


更智能的智能运维

既然通过PISA可以让Pandora的能力得以输出,那么我们就不得不说说PISA和Pandora结合对企业实际场景中的运维能够产生哪些帮助。

以一个实际场景——客户电话反馈银行代缴水电费出现问题为例,传统的处理方式往往是,客服提交工单给IT进行运维排查,运维排查问题并通过客服向客户反馈结果。然而此时,故障已经发生,客户体验难以挽回。在PISA和Pandora的帮助下,整个银行的运维系统可以发生根本性的转变。

首先,将事后处理变为事前发现。仍以上述案例为例,在客户致电之前,银行的IT部门就能够收到代缴费服务可能出现问题的告警。随后,相比于传统逐层、逐块排查的运维排查方式,PISA能够通过业务交易健康服务分析器迅速发现问题并修复故障。

PISA为实际运维业务流程带来的根本性改变,来自于七牛云思考方式的不同。


1、打通业务和运维,事后处理转变为事前发现

在实际场景中,业务和运维往往是两个割裂的部门。由于职业要求,业务部门一般不在意系统的底层是如何实现的,他们更重视交付。同时,两个部门一般很少交流,只有在出现故障或者业务想要争取IT资源时,才会凑在一起解决问题。

这就导致运维一直是公司的成本中心,是花钱的地方,从盈利的角度来说,自然是越花小钱办大事越好,但这也导致出问题的可能性提高。但如果让运维能够提前发现可能发生的问题,为公司减少亏损,将成本中心转变为利润中心,就是更优的运营逻辑。

七牛云认为,业务和运维要打通,这样运维才能提前预知风险,业务也才能更稳定、更安全地开展。


2、打通运维和运维,只有数据互通才能更快地修复故障

IT系统的每一个环节都可能有故障发生,然而现有的监控、运维系统往往只能关注到某一个层面,比如SkyWalking监控应用层,ZABBIX监控服务层。因此,要逐一排查非常费时费事。

并且,当企业的运维部门细分到应用运维、主机系统、网络、DBA等多条责任线时,由于数据不互通,排查更是困难。就好像破案时各部门无法将线索共享,势必会耽误进展。

因此,七牛云最底层的思考在于,数据一定要汇聚。七牛云成立于2011年,十年间,公司最重要的资产要数其建立了统一的异构数据湖,这也是Pandora得以施展拳脚的基础。


异构数据湖正发挥价值

从公司整体来看,七牛云的主营业务包括Media PaaS与Data PaaS等,所有数据会汇聚到脱胎于集合结构化、非结构化、半结构化数据的异构数据湖中。

Pandora是机器数据分析平台,负责分析任何机器或者系统所产生的数据,比如服务器、传感器、各种应用、网络设备等产生的数据。

Pandora有三大优势。首先,Pandora能够实现计算与存储的完全解耦,资源应需而变。

第二,Pandora原生支持schema on read的能力。支持采集时、索引时、搜索时三种解析方式。搜索时解析带来了极其简便的数据接入体验。

同时,Pandora使用SPL语言进行数据分析(SPL,机器数据分析的标准语言,SPL=SQL+Unix Pipeline)。SPL语言具备统一检索、分析、可视化和告警等需求的能力,支持对原始数据直接进行处理,且专为时序数据优化。

Pandora的三大优势完美地解决了复杂数据的高效智能分析问题,也与PISA结合,为智能运维的颠覆性创新带来了答案。上文所说的主动发现、数据打通,其实就是异构数据的累积与异构数据的分析能力相结合的结果。


工业互联网时代,智能运维爆发新火花

2020年8月24日,在全球因疫情影响全面线上办公的时候,Zoom停服3小时。在对用户带来不便的同时,也使其蒸蒸日上的势头遭受质疑。对于互联网和科技公司来说,服务的稳定性意味着业务本身,其重要性不言而喻。

如今,除互联网本身外,IT技术及智能技术走进了深水区。在工业及制造业,运维正发挥着前所未有的效力。预测性维护、故障预诊、远程智能运维、工业数据分析……,这些相对成熟的功能已经在工厂、电力系统、轨道系统等领域先后应用。

在这些行业,各种机器及系统时刻都在产生数据,「有数据,缺算法」是行业常态。因此,如何采集及分析机器数据,是七牛云等公司制胜智能运维的关键。从这个角度看,今日发布的PISA与Pandora结合,可谓是七牛云搅动行业浪花的一个举动。

相关文章
|
21天前
|
机器学习/深度学习 人工智能 运维
人工智能在云计算中的运维优化:智能化的新时代
人工智能在云计算中的运维优化:智能化的新时代
118 49
|
14天前
|
存储 分布式计算 Hadoop
【产品升级】Dataphin V4.4重磅发布:开发运维提效、指标全生命周期管理、智能元数据生成再升级
Dataphin V4.4版本引入了多项核心升级,包括级联发布、元数据采集扩展、数据源指标上架、自定义属性管理等功能,大幅提升数据处理与资产管理效率。此外,还支持Hadoop集群管理、跨Schema数据读取、实时集成目标端支持Hudi及MaxCompute delta等技术,进一步优化用户体验。
307 3
【产品升级】Dataphin V4.4重磅发布:开发运维提效、指标全生命周期管理、智能元数据生成再升级
|
5天前
|
数据采集 机器学习/深度学习 人工智能
基于AI的网络流量分析:构建智能化运维体系
基于AI的网络流量分析:构建智能化运维体系
49 13
|
12天前
|
机器学习/深度学习 数据采集 运维
机器学习在运维中的实时分析应用:新时代的智能运维
机器学习在运维中的实时分析应用:新时代的智能运维
63 12
|
22天前
|
人工智能 运维 自然语言处理
智能化运维:AI在IT运维领域的深度应用与实践####
本文探讨了人工智能(AI)技术在IT运维领域的深度融合与实践应用,通过分析AI驱动的自动化监控、故障预测与诊断、容量规划及智能决策支持等关键方面,揭示了AI如何赋能IT运维,提升效率、降低成本并增强系统稳定性。文章旨在为读者提供一个关于AI在现代IT运维中应用的全面视角,展示其实际价值与未来发展趋势。 ####
136 4
|
24天前
|
机器学习/深度学习 人工智能 运维
智能化运维在现代IT系统中的应用与挑战####
本文探讨了智能化运维(AIOps)在现代IT系统中的关键作用及其面临的主要挑战。随着云计算、大数据和人工智能技术的飞速发展,传统的IT运维模式正逐渐向更加智能、自动化的方向转变。智能化运维通过集成机器学习算法、数据分析工具和自动化流程,显著提升了系统稳定性、故障响应速度和资源利用效率。然而,这一转型过程中也伴随着数据隐私、技术复杂性和人才短缺等问题。本文旨在为读者提供一个关于智能化运维的全面视角,分析其优势与挑战,并探讨未来的发展趋势。 ####
38 6
|
23天前
|
机器学习/深度学习 人工智能 运维
智能化运维:AI与大数据在IT运维中的应用探索####
本文旨在探讨人工智能(AI)与大数据分析技术如何革新传统IT运维模式,提升运维效率与服务质量。通过具体案例分析,揭示AI算法在故障预测、异常检测及自动化修复等方面的实际应用成效,同时阐述大数据如何助力实现精准运维管理,降低运营成本,提升用户体验。文章还将简要讨论实施智能化运维面临的挑战与未来发展趋势,为IT管理者提供决策参考。 ####
|
21天前
|
机器学习/深度学习 人工智能 运维
智能化运维在现代数据中心的应用与挑战####
本文深入探讨了智能化运维(AIOps)技术在现代数据中心管理中的实际应用,分析了其带来的效率提升、成本节约及潜在风险。通过具体案例,阐述了智能监控、自动化故障排查、容量规划等关键功能如何助力企业实现高效稳定的IT环境。同时,文章也指出了实施过程中面临的数据隐私、技术整合及人才短缺等挑战,并提出了相应的解决策略。 --- ####
42 1
|
24天前
|
机器学习/深度学习 数据采集 人工智能
智能化运维在企业IT管理中的应用与实践####
本文深入探讨了智能化运维(AIOps)的核心技术原理,通过对比传统运维模式,揭示了AIOps如何利用大数据、机器学习等先进技术提升故障预测准确性、优化资源分配及自动化处理流程。同时,文章详细阐述了智能化运维平台的实施步骤,包括数据收集与分析、模型训练与部署、以及持续监控与优化,旨在为企业IT部门提供一套切实可行的智能化转型路径。最后,通过几个典型应用案例,如某大型电商平台的智能告警系统和金融企业的自动化故障排查流程,直观展示了智能化运维在实际业务场景中的显著成效,强调了其在提升运维效率、降低运营成本方面的关键作用。 ####
46 4
|
26天前
|
数据采集 机器学习/深度学习 人工智能
智能运维在IT管理中的实践与探索
【10月更文挑战第21天】 本文深入探讨了智能运维(AIOps)技术在现代IT管理中的应用,通过分析其核心组件、实施策略及面临的挑战,揭示了智能运维如何助力企业实现自动化监控、故障预测与快速响应,从而提升整体运维效率与系统稳定性。文章还结合具体案例,展示了智能运维在实际环境中的显著成效。
51 4

热门文章

最新文章