程序员数学(17)–勾股定理

简介: 本文目录1. 勾股定理2. 勾股定理的证明3. 勾股定理的逆定理

1. 勾股定理

如果直角三角形的两条直角边长分别为a、b,斜边长为c,则

image.png

2. 勾股定理的证明

image.png

如上图,四个全等的直角三角形围成一个中间的正方形,直角三角形的直角边长分别为a、b,斜边长为c。


1、三角形面积为:a*b/2

2、中间围成的正方形边长为b-a,正方形面积为(b-a)(b-a)

3、因为直角三角形全等,所以∠DAE=∠ABE,所以∠DAB=90°,然后又因为四个三角形全等,所以可以得出外围四边形的四条边相等。所以外围四边形为正方形。

4、所以正方形的面积即可以为边长的平方,也可是4个三角形的面积加上内部正方形面积,即为:

image.png

3. 勾股定理的逆定理

如果三角形的边长a、b、c满足

image.png


相关文章
|
程序员
程序员的数学【概率论】(二)
本文其实值属于:程序员的数学【AIoT阶段二】 的一部分内容,本篇把这部分内容单独截取出来,方便大家的观看,本文介绍 概率论
247 0
程序员的数学【概率论】(二)
|
机器学习/深度学习 程序员
程序员的数学【概率论】(三)
本文其实值属于:程序员的数学【AIoT阶段二】 的一部分内容,本篇把这部分内容单独截取出来,方便大家的观看,本文介绍 概率论
158 0
程序员的数学【概率论】(三)
|
机器学习/深度学习 算法 数据挖掘
程序员的数学【概率论】(一)
本文其实值属于:程序员的数学【AIoT阶段二】 的一部分内容,本篇把这部分内容单独截取出来,方便大家的观看,本文介绍 概率论
298 0
程序员的数学【概率论】(一)
|
机器学习/深度学习 程序员
程序员的数学【微积分基础】(二)
本文其实值属于:程序员的数学【AIoT阶段二】 的一部分内容,本篇把这部分内容单独截取出来,方便大家的观看,本文介绍 微积分基础,微积分是公式推导的基础,如果你也关注我的专栏:西瓜书读书笔记,里面对公式进行详细推导的过程中,运用到了大量的 导数,积分,身为一名程序员,我们务必掌握一些必备的数学知识。
252 0
程序员的数学【微积分基础】(二)
|
机器学习/深度学习 程序员
程序员的数学【微积分基础】(一)
本文其实值属于:程序员的数学【AIoT阶段二】 的一部分内容,本篇把这部分内容单独截取出来,方便大家的观看,本文介绍 微积分基础,微积分是公式推导的基础,如果你也关注我的专栏:西瓜书读书笔记,里面对公式进行详细推导的过程中,运用到了大量的 导数,积分,身为一名程序员,我们务必掌握一些必备的数学知识。
320 0
程序员的数学【微积分基础】(一)
|
机器学习/深度学习 程序员
程序员的数学【线性代数基础】(三)
本文其实值属于:程序员的数学【AIoT阶段二】 的一部分内容,本篇把这部分内容单独截取出来,方便大家的观看,本文介绍 线性代数基础,在机器学习中经常会有矩阵、向量的定义以及计算,是公式定义、推导中必不可少的一部分内容,很多基础概念的定义中都用到了向量的概念,有关线性代数,
354 0
程序员的数学【线性代数基础】(三)
|
机器学习/深度学习 人工智能 程序员
程序员的数学【线性代数基础】(二)
本文其实值属于:程序员的数学【AIoT阶段二】 的一部分内容,本篇把这部分内容单独截取出来,方便大家的观看,本文介绍 线性代数基础,在机器学习中经常会有矩阵、向量的定义以及计算,是公式定义、推导中必不可少的一部分内容,很多基础概念的定义中都用到了向量的概念,有关线性代数,
169 0
程序员的数学【线性代数基础】(二)
|
机器学习/深度学习 数据挖掘 程序员
程序员的数学【线性代数基础】(一)
本文其实值属于:程序员的数学【AIoT阶段二】 的一部分内容,本篇把这部分内容单独截取出来,方便大家的观看,本文介绍 线性代数基础,在机器学习中经常会有矩阵、向量的定义以及计算,是公式定义、推导中必不可少的一部分内容,很多基础概念的定义中都用到了向量的概念,有关线性代数,
385 0
程序员的数学【线性代数基础】(一)
|
设计模式 机器学习/深度学习 算法
数学,离一个程序员有多近?
for循环没算法快 1. for 循环实现 2. 算法逻辑实现 3. 耗时曲线对比 四、Java中的算法运用 1. HashMap的扰动函数 2. 斐波那契(Fibonacci)散列法 3. 梅森旋转算法(Mersenne twister) 五、程序员数学入门
263 0
数学,离一个程序员有多近?
|
程序员
程序员数学(15)--分式
本文目录 1. 分式定义 2. 分式的基本性质 3. 分式的约分 4. 分式的通分 5. 分式的乘法、除法、乘方法则 6. 分式的加减法法则 7. 分式方程
142 0
程序员数学(15)--分式