程序员数学(15)--分式

简介: 本文目录1. 分式定义2. 分式的基本性质3. 分式的约分4. 分式的通分5. 分式的乘法、除法、乘方法则6. 分式的加减法法则7. 分式方程

1. 分式定义

分母中含有字母的式子为分式,例如1/x=2,即为分式。需要注意的是,分式的分母为0时,分式没有意义。


2. 分式的基本性质

分式的分子和分母同时乘(或除以)同一个不等于0的整式,分式的值不变。


3. 分式的约分

根据分式的基本性质,把一个分式的分子和分母的公因式约去,即为分式的约分。例如:

image.png

最后计算得出的分子与分母没有公因式的分式,叫做最简分式。


4. 分式的通分

把几个分母不同的分式,分别化为与原来的分式相等的同分母的分式,叫做分式的通分。


为了实现通分,首先需要确定各个分式的公分母,一半取各分母的所有因式的最高次幂的积作为公分母,即是采用最简公分母作为公分母。例如:

image.png

5. 分式的乘法、除法、乘方法则

image.png

6. 分式的加减法法则

同分母的分式相加减,分母不变,分子相加减。

不同分母的分式相加减,先通分,变为同分母的分式进行加减。

7. 分式方程

分母中含有未知数的方程为分式方程。

注意分式方程可以通过将两边乘以最简公分母来转换为整式方程,例如:

image.png

注意分式方程解完后,要将解代入最简公分母,如果最简公分母为0,实际上这个解就不是分式方程的解。因为此时分式没有意义。

相关文章
|
机器学习/深度学习 算法 数据挖掘
程序员的数学【概率论】(一)
本文其实值属于:程序员的数学【AIoT阶段二】 的一部分内容,本篇把这部分内容单独截取出来,方便大家的观看,本文介绍 概率论
298 0
程序员的数学【概率论】(一)
|
机器学习/深度学习 程序员
程序员的数学【概率论】(三)
本文其实值属于:程序员的数学【AIoT阶段二】 的一部分内容,本篇把这部分内容单独截取出来,方便大家的观看,本文介绍 概率论
158 0
程序员的数学【概率论】(三)
|
程序员
程序员的数学【概率论】(二)
本文其实值属于:程序员的数学【AIoT阶段二】 的一部分内容,本篇把这部分内容单独截取出来,方便大家的观看,本文介绍 概率论
247 0
程序员的数学【概率论】(二)
|
机器学习/深度学习 程序员
程序员的数学【微积分基础】(二)
本文其实值属于:程序员的数学【AIoT阶段二】 的一部分内容,本篇把这部分内容单独截取出来,方便大家的观看,本文介绍 微积分基础,微积分是公式推导的基础,如果你也关注我的专栏:西瓜书读书笔记,里面对公式进行详细推导的过程中,运用到了大量的 导数,积分,身为一名程序员,我们务必掌握一些必备的数学知识。
252 0
程序员的数学【微积分基础】(二)
|
机器学习/深度学习 程序员
程序员的数学【微积分基础】(一)
本文其实值属于:程序员的数学【AIoT阶段二】 的一部分内容,本篇把这部分内容单独截取出来,方便大家的观看,本文介绍 微积分基础,微积分是公式推导的基础,如果你也关注我的专栏:西瓜书读书笔记,里面对公式进行详细推导的过程中,运用到了大量的 导数,积分,身为一名程序员,我们务必掌握一些必备的数学知识。
319 0
程序员的数学【微积分基础】(一)
|
机器学习/深度学习 数据挖掘 程序员
程序员的数学【线性代数基础】(一)
本文其实值属于:程序员的数学【AIoT阶段二】 的一部分内容,本篇把这部分内容单独截取出来,方便大家的观看,本文介绍 线性代数基础,在机器学习中经常会有矩阵、向量的定义以及计算,是公式定义、推导中必不可少的一部分内容,很多基础概念的定义中都用到了向量的概念,有关线性代数,
383 0
程序员的数学【线性代数基础】(一)
|
机器学习/深度学习 程序员
程序员的数学【线性代数基础】(三)
本文其实值属于:程序员的数学【AIoT阶段二】 的一部分内容,本篇把这部分内容单独截取出来,方便大家的观看,本文介绍 线性代数基础,在机器学习中经常会有矩阵、向量的定义以及计算,是公式定义、推导中必不可少的一部分内容,很多基础概念的定义中都用到了向量的概念,有关线性代数,
354 0
程序员的数学【线性代数基础】(三)
|
机器学习/深度学习 人工智能 程序员
程序员的数学【线性代数基础】(二)
本文其实值属于:程序员的数学【AIoT阶段二】 的一部分内容,本篇把这部分内容单独截取出来,方便大家的观看,本文介绍 线性代数基础,在机器学习中经常会有矩阵、向量的定义以及计算,是公式定义、推导中必不可少的一部分内容,很多基础概念的定义中都用到了向量的概念,有关线性代数,
169 0
程序员的数学【线性代数基础】(二)
|
设计模式 机器学习/深度学习 算法
数学,离一个程序员有多近?
for循环没算法快 1. for 循环实现 2. 算法逻辑实现 3. 耗时曲线对比 四、Java中的算法运用 1. HashMap的扰动函数 2. 斐波那契(Fibonacci)散列法 3. 梅森旋转算法(Mersenne twister) 五、程序员数学入门
263 0
数学,离一个程序员有多近?
|
程序员 数据库管理
程序员数学(18)–平行四边形
本文目录 1. 平行四边形 2. 平行四边形性质 3. 平行四边形的判定 4. 中位线 5. 矩形 6. 菱形 7. 正方形
165 0
程序员数学(18)–平行四边形