程序员数学(8)--二元一次方程组

简介: 本文目录1. 背景2. 定义3. 方程组的解4. 解二元一次方程组4.1 代入消元法4.2 加减消元法5. 解三元一次方程组

1. 背景

篮球联赛中,胜1场积2分,负1场积1分,某队在10场比赛中得到16分,问该队胜负场数。


如果不用设未知数的方程来解该题,还真不好解,我能想到的只能是枚举法去试,但是枚举法毕竟效率低啊。


如果用一元一次方程来解,则设胜场数为x,则负场数10-x,则有:2x+(10-x)*1=16


当然我们可以更加直接一点,设2个未知数x,y分别表示胜负场数,则可列一个方程组:


x+y=10

2x+y=16

2. 定义

上面的方程组中,只含有2个未知数,且未知数项的最高次数为1,这样的方程组叫做二元一次方程组。


3. 方程组的解

对于x+y=10来说,(1,9)、(2,8)、(3,7)均是它的解。

对于2x+y=16来说,(1,14)、(2,12)、(3,10)均是它的解。


但是有一组特殊的解x=6,y=4,它是两个方程的公共解,称作:二元一次方程组的解。


4. 解二元一次方程组

那么二元一次方程组如何求解呢,总不能一组一组去试吧,实际上我们利用一些方法就可以巧妙的解答。


4.1 代入消元法

x+y=10

2x+y=16

对于上面的方程组来说,因为x+y=10,所以x=10-y。代入下式有2x+10-x=16。这样就能得出x和y值了。


这种将方程组的一个方程中的未知数用含另一个未知数的式子表示出来,然后代入另一个方程,实现消元(未知数由多化少称为消元),进而求解的方法叫做代入消元法,简称代入法。


4.2 加减消元法

根据等式的性质,如果等式两边同时加减相等的式子,等式两边仍然相等。


所以对上述方程组来说,将下式减去上式得出:x=6,再根据上式得出y=10-x=10-6=4。


这种通过方程两边分别相加或者相减来消去未知数的方法,叫做加减消元法,简称加减法。


5. 解三元一次方程组

如果方程组中含有3个未知数,且每个方程含有未知数的项的最高次数为1,并且一共有3个方程,则这样的方程组叫做三元一次方程组。


那么如何解三元一次方程组呢,其实指导思想和二元一次方程组类似,也是消元。


举例如下:


(1) a+b+c=0

(2) 4a+2b+c=3

(3) 25a+5b+c=60

我们先用(2)减去(1),得出3a+b=3,然后用(3)减去(2)得出21a+3b=57。


这样就得出一个二元一次方程组,解出即可得a和b,然后代入任何一个式子即可得出c。

相关文章
数学|泊松分酒问题蕴藏的数学知识
数学|泊松分酒问题蕴藏的数学知识
256 0
程序员数学(28)–锐角三角函数
本文目录 1. 概念 2. 解直角三角形
223 0
程序员数学(28)–锐角三角函数
程序员数学(6)--实数
本文目录 1. 平方根 2. 立方根 3. 实数 4. 证明无理数的存在
208 0
程序员数学(6)--实数
程序员数学(21)–一元二次方程
本文目录 1. 概念 2. 配方法解一元二次方程 3. 公式法 4. 因式分解法
209 0
程序员数学(21)–一元二次方程
程序员数学(1)--有理数
本文目录 1. 正数、0、负数 2. 有理数 3. 数轴 4. 相反数 5. 绝对值 6. 有理数的加减法 7. 有理数的乘除法 8. 乘方 9. 科学计数法
128 0
[再寄小读者之数学篇](2014-11-21 关于积和式的一个不等式)
在 Rajendra Bhatia 的 Matrix Analysis 中, Exercise I.5.8 说: Prove that for any matrices $A,B$ we have $$\bex |\per (AB)|^2\leq \per (AA^*)\cdot \per (B^*B).
670 0
[再寄小读者之数学篇](2014-11-19 一个代数不等式)
$$\bex \sqrt{x^2+x+1}+ \sqrt{y^2+y+1} +\sqrt{x^2-x+1}+ \sqrt{y^2-y+1}\geq 2(x+y). \eex$$ Ref. [Proof Without Words: An Algebraic Inequality, The College Mathematics Journal].
657 0
[再寄小读者之数学篇](2014-11-14 矩阵的应用: 数论)
1. 代数数: $\al\in\bbC$ 称为代数数, 如果它是某个系数为有理数的非零多项式的根. 2. 代数数全体构成一个域. (利用伙伴矩阵, 张量积很容易证明) 3. 代数整数: $\al\in\bbC$ 称为代数整数, 如果它是某个首一整系数多项式的根.
589 0

热门文章

最新文章