TF:tensorflow框架中常用函数介绍—tf.Variable()和tf.get_variable()用法及其区别

简介: TF:tensorflow框架中常用函数介绍—tf.Variable()和tf.get_variable()用法及其区别

tensorflow框架


tf.Variable()和tf.get_variable()在创建变量的过程基本一样。它们之间最大的区别在于指定变量名称的参数。


tf.Variable(),变量名称name是一个可选的参数。

tf.get_variable(),变量名称是一个必填的参数。


tensorflow.Variable()函数



@tf_export("Variable")

class Variable(checkpointable.CheckpointableBase):

 """See the @{$variables$Variables How To} for a high level overview.

 A variable maintains state in the graph across calls to `run()`. You add a  variable to the graph by constructing an instance of the class `Variable`.

 The `Variable()` constructor requires an initial value for the variable, which can be a `Tensor` of any type and shape. The initial value defines the  type and shape of the variable. After construction, the type and shape of

 the variable are fixed. The value can be changed using one of the assign  methods.

 If you want to change the shape of a variable later you have to use an  `assign` Op with `validate_shape=False`.

 Just like any `Tensor`, variables created with `Variable()` can be used as inputs for other Ops in the graph. Additionally, all the operators overloaded for the `Tensor` class are carried over to variables, so you can

 also add nodes to the graph by just doing arithmetic on variables.

 ```python

 import tensorflow as tf

 # Create a variable.

 w = tf.Variable(<initial-value>, name=<optional-name>)

 # Use the variable in the graph like any Tensor.

 y = tf.matmul(w, ...another variable or tensor...)

 # The overloaded operators are available too.

 z = tf.sigmoid(w + y)

 # Assign a new value to the variable with `assign()` or a related method.

 w.assign(w + 1.0)

 w.assign_add(1.0)

@tf_export(“变量”)

类变量(checkpointable.CheckpointableBase):

查看@{$variables$ variables How To}获取高级概述。

一个变量在调用“run()”时维护图中的状态。通过构造类“variable”的一个实例,可以将一个变量添加到图形中。

‘Variable()’构造函数需要一个变量的初值,它可以是任何类型和形状的‘张量’。初始值定义变量的类型和形状。施工后,的类型和形状

变量是固定的。可以使用指定方法之一更改值。

如果以后要更改变量的形状,必须使用' assign ' Op和' validate_shape=False '。

与任何“张量”一样,用“Variable()”创建的变量可以用作图中其他操作的输入。此外,“张量”类的所有运算符都重载了,因此可以转移到变量中

还可以通过对变量进行运算将节点添加到图中。

”“python

导入tensorflow作为tf

创建一个变量。

w =特遣部队。变量(name = <可选名称> <初值>)

像使用任何张量一样使用图中的变量。

y =特遣部队。matmul (w,…另一个变量或张量……)

重载的操作符也是可用的。

z =特遣部队。乙状结肠(w + y)

用' Assign() '或相关方法为变量赋值。

w。分配(w + 1.0)

w.assign_add (1.0)

' ' '

When you launch the graph, variables have to be explicitly initialized before you can run Ops that use their value. You can initialize a variable by running its *initializer op*, restoring the variable from a save file, or simply running an `assign` Op that assigns a value to the variable. In fact,  the variable *initializer op* is just an `assign` Op that assigns the variable's initial value to the variable itself.

 ```python

 # Launch the graph in a session.

 with tf.Session() as sess:

     # Run the variable initializer.

     sess.run(w.initializer)

     # ...you now can run ops that use the value of 'w'...

 ```

 The most common initialization pattern is to use the convenience function global_variables_initializer()` to add an Op to the graph that initializes  all the variables. You then run that Op after launching the graph.

 ```python

 # Add an Op to initialize global variables.

 init_op = tf.global_variables_initializer()

 # Launch the graph in a session.

 with tf.Session() as sess:

     # Run the Op that initializes global variables.

     sess.run(init_op)

     # ...you can now run any Op that uses variable values...

 ```

 If you need to create a variable with an initial value dependent on another variable, use the other variable's `initialized_value()`. This ensures that variables are initialized in the right order. All variables are automatically collected in the graph where they are created. By default, the constructor adds the new variable to the graph  collection `GraphKeys.GLOBAL_VARIABLES`. The convenience function

 `global_variables()` returns the contents of that collection.

 When building a machine learning model it is often convenient to distinguish  between variables holding the trainable model parameters and other variables  such as a `global step` variable used to count training steps. To make this  easier, the variable constructor supports a `trainable=<bool>` parameter. If `True`, the new variable is also added to the graph collection `GraphKeys.TRAINABLE_VARIABLES`. The convenience function `trainable_variables()` returns the contents of this collection. The various `Optimizer` classes use this collection as the default list of  variables to optimize.

 WARNING: tf.Variable objects have a non-intuitive memory model. A Variable is represented internally as a mutable Tensor which can non-deterministically alias other Tensors in a graph. The set of operations which consume a Variable  and can lead to aliasing is undetermined and can change across TensorFlow versions. Avoid writing code which relies on the value of a Variable either  changing or not changing as other operations happen. For example, using Variable objects or simple functions thereof as predicates in a `tf.cond` is  dangerous and error-prone:

 ```

 v = tf.Variable(True)

 tf.cond(v, lambda: v.assign(False), my_false_fn)  # Note: this is broken.

 ```

 Here replacing tf.Variable with tf.contrib.eager.Variable will fix any nondeterminism issues.

 To use the replacement for variables which does not have these issues:

 * Replace `tf.Variable` with `tf.contrib.eager.Variable`;

 * Call `tf.get_variable_scope().set_use_resource(True)` inside a  `tf.variable_scope` before the `tf.get_variable()` call.

 @compatibility(eager)

 `tf.Variable` is not compatible with eager execution.  Use  `tf.contrib.eager.Variable` instead which is compatible with both eager  execution and graph construction.  See [the TensorFlow Eager Execution  guide](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/eager/python/g3doc/guide.md#variables-and-optimizers)

 for details on how variables work in eager execution.

 @end_compatibility

 """

启动图形时,必须显式初始化变量,然后才能运行使用其值的操作。您可以通过运行它的*initializer op*来初始化一个变量,也可以从保存文件中恢复这个变量,或者简单地运行一个' assign ' op来为这个变量赋值。实际上,变量*初始化器op*只是一个' assign ' op,它将变量的初始值赋给变量本身。

”“python

在会话中启动图形。

session()作为sess:

#运行变量初始化器。

sess.run (w.initializer)

#……现在可以运行使用'w'值的ops…

' ' '

最常见的初始化模式是使用方便的函数global_variables_initializer() '将Op添加到初始化所有变量的图中。然后在启动图形之后运行该Op。

”“python

#添加一个Op来初始化全局变量。

init_op = tf.global_variables_initializer ()

在会话中启动图形。

session()作为sess:

运行初始化全局变量的Op。

sess.run (init_op)

#……您现在可以运行任何使用变量值的Op…

' ' '

如果需要创建一个初始值依赖于另一个变量的变量,请使用另一个变量的' initialized_value() '。这样可以确保以正确的顺序初始化变量。所有变量都自动收集到创建它们的图中。默认情况下,构造函数将新变量添加到图形集合“GraphKeys.GLOBAL_VARIABLES”中。方便的功能

' global_variables() '返回该集合的内容。

在构建机器学习模型时,通常可以方便地区分包含可训练模型参数的变量和其他变量,如用于计算训练步骤的“全局步骤”变量。为了简化这一点,变量构造函数支持一个' trainable=<bool> '参数。</bool>如果为True,则新变量也将添加到图形集合“GraphKeys.TRAINABLE_VARIABLES”中。便利函数' trainable_variables() '返回这个集合的内容。各种“优化器”类使用这个集合作为要优化的默认变量列表。

警告:tf。变量对象有一个不直观的内存模型。一个变量在内部被表示为一个可变张量,它可以不确定性地混叠一个图中的其他张量。使用变量并可能导致别名的操作集是未确定的,可以跨TensorFlow版本更改。避免编写依赖于变量值的代码,这些变量值随着其他操作的发生而改变或不改变。例如,在“tf”中使用变量对象或其简单函数作为谓词。cond’是危险的,容易出错的:

' ' '

v = tf.Variable(真正的)

特遣部队。cond(v, lambda: v.assign(False), my_false_fn) #注意:这个坏了。

' ' '

这里替换特遣部队。与tf.contrib.eager变量。变量将修复任何非决定论的问题。

使用替换变量不存在以下问题:

*取代“特遣部队。变量与“tf.contrib.eager.Variable”;

*在一个tf中调用' tf.get_variable_scope().set_use_resource(True) '。在调用tf.get_variable()之前调用variable_scope。

@compatibility(渴望)

“特遣部队。变量'与立即执行不兼容。使用“tf.contrib.eager。变量',它与立即执行和图形构造都兼容。参见[TensorFlow Eager执行指南](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/eager/python/g3doc/guide.md#变量和优化器)

有关变量在立即执行中如何工作的详细信息。

@end_compatibility

”“”

 Args:

initial_value: A `Tensor`, or Python object convertible to a `Tensor`,   which is the initial value for the Variable. The initial value must have  a shape specified unless `validate_shape` is set to False. Can also be a callable with no argument that returns the initial value when called. In  that case, `dtype` must be specified. (Note that initializer functions from init_ops.py must first be bound to a shape before being used here.)

     trainable: If `True`, the default, also adds the variable to the graph collection `GraphKeys.TRAINABLE_VARIABLES`. This collection is used as the default list of variables to use by the `Optimizer` classes. collections: List of graph collections keys. The new variable is added to these collections. Defaults to `[GraphKeys.GLOBAL_VARIABLES]`.

     validate_shape: If `False`, allows the variable to be initialized with a value of unknown shape. If `True`, the default, the shape of initial_value` must be known. caching_device: Optional device string describing where the Variable  should be cached for reading.  Defaults to the Variable's device.   If not `None`, caches on another device.  Typical use is to cache on the device where the Ops using the Variable reside, to deduplicate  copying through `Switch` and other conditional statements.

     name: Optional name for the variable. Defaults to `'Variable'` and gets uniquified automatically.

     variable_def: `VariableDef` protocol buffer. If not `None`, recreates the Variable object with its contents, referencing the variable's nodes

       in the graph, which must already exist. The graph is not changed. `variable_def` and the other arguments are mutually exclusive.

     dtype: If set, initial_value will be converted to the given type.  If `None`, either the datatype will be kept (if `initial_value` is  a Tensor), or `convert_to_tensor` will decide.

     expected_shape: A TensorShape. If set, initial_value is expected  to have this shape.

     import_scope: Optional `string`. Name scope to add to the   `Variable.` Only used when initializing from protocol buffer.

     constraint: An optional projection function to be applied to the variable after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must  take as input the unprojected Tensor representing the value of the   variable and return the Tensor for the projected value   (which must have the same shape). Constraints are not safe to  use when doing asynchronous distributed training.

   Raises:

     ValueError: If both `variable_def` and initial_value are specified.

     ValueError: If the initial value is not specified, or does not have a shape and `validate_shape` is `True`.

     RuntimeError: If eager execution is enabled.

   @compatibility(eager)

   `tf.Variable` is not compatible with eager execution.  Use

   `tfe.Variable` instead which is compatible with both eager execution

   and graph construction.  See [the TensorFlow Eager Execution

   guide](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/eager/python/g3doc/guide.md#variables-and-optimizers)

   for details on how variables work in eager execution.

   @end_compatibility

参数:

initial_value:一个“张量”,或者Python对象可转换成一个“张量”,它是变量的初始值。除非将“validate_shape”设置为False,否则必须指定初始值的形状。也可以是可调用的,没有参数,调用时返回初始值。在这种情况下,必须指定' dtype '。(注意,在这里使用初始化器函数之前,init_ops.py必须先绑定到一个形状上。)

可训练的:如果“True”是默认值,那么也会将变量添加到图形集合“GraphKeys.TRAINABLE_VARIABLES”中。此集合用作“优化器”类使用的默认变量列表。集合:图形集合键的列表。新变量被添加到这些集合中。默认为“[GraphKeys.GLOBAL_VARIABLES]”。

validate_shape:如果为“False”,则允许使用未知形状的值初始化变量。如果' True '是默认值,则必须知道initial_value '的形状。caching_device:可选的设备字符串,用于描述变量应该被缓存到什么地方以便读取。变量设备的默认值。如果不是“None”,则缓存到另一个设备上。典型的用法是在使用变量驻留的操作系统所在的设备上进行缓存,通过“Switch”和其他条件语句进行重复复制。

name:变量的可选名称。默认值为“变量”,并自动uniquified。

variable_def: ' VariableDef '协议缓冲区。如果不是“None”,则使用其内容重新创建变量对象,并引用变量的节点

在图中,它必须已经存在。图形没有改变。' variable_def '和其他参数是互斥的。

如果设置了,initial_value将转换为给定的类型。如果‘None’,那么数据类型将被保留(如果‘initial_value’是一个张量),或者‘convert_to_张量’将决定。

expected_shape: TensorShape。如果设置了,initial_value将具有此形状。

import_scope:可选“字符串”。将作用域命名为“变量”。仅在从协议缓冲区初始化时使用。

约束:一个可选的投影函数,在被“优化器”更新后应用到变量上(例如,用于实现规范约束或层权重的值约束)。函数必须将表示变量值的未投影张量作为输入,并返回投影值的张量(其形状必须相同)。在进行异步分布式培训时使用约束是不安全的。

提出了:

ValueError:如果同时指定了' variable_def '和initial_value。

ValueError:如果没有指定初始值,或者没有形状,并且‘validate_shape’为‘True’。

RuntimeError:如果启用了立即执行。

@compatibility(渴望)

“特遣部队。变量'与立即执行不兼容。使用

tfe。变量',而不是与两个立即执行兼容

和图施工。参见[TensorFlow立即执行]

指南](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/eager/python/g3doc/guide.md # variables-and-optimizers)

有关变量在立即执行中如何工作的详细信息。

@end_compatibility


 

@tf_export("Variable")

class Variable(checkpointable.CheckpointableBase):

 """See the @{$variables$Variables How To} for a high level overview.

 A variable maintains state in the graph across calls to `run()`. You add a

 variable to the graph by constructing an instance of the class `Variable`.

 The `Variable()` constructor requires an initial value for the variable,

 which can be a `Tensor` of any type and shape. The initial value defines the

 type and shape of the variable. After construction, the type and shape of

 the variable are fixed. The value can be changed using one of the assign

 methods.

 If you want to change the shape of a variable later you have to use an

 `assign` Op with `validate_shape=False`.

 Just like any `Tensor`, variables created with `Variable()` can be used as

 inputs for other Ops in the graph. Additionally, all the operators

 overloaded for the `Tensor` class are carried over to variables, so you can

 also add nodes to the graph by just doing arithmetic on variables.

 ```python

 import tensorflow as tf

 # Create a variable.

 w = tf.Variable(<initial-value>, name=<optional-name>)

 # Use the variable in the graph like any Tensor.

 y = tf.matmul(w, ...another variable or tensor...)

 # The overloaded operators are available too.

 z = tf.sigmoid(w + y)

 # Assign a new value to the variable with `assign()` or a related method.

 w.assign(w + 1.0)

 w.assign_add(1.0)

 ```

 When you launch the graph, variables have to be explicitly initialized before

 you can run Ops that use their value. You can initialize a variable by

 running its *initializer op*, restoring the variable from a save file, or

 simply running an `assign` Op that assigns a value to the variable. In fact,

 the variable *initializer op* is just an `assign` Op that assigns the

 variable's initial value to the variable itself.

 ```python

 # Launch the graph in a session.

 with tf.Session() as sess:

     # Run the variable initializer.

     sess.run(w.initializer)

     # ...you now can run ops that use the value of 'w'...

 ```

 The most common initialization pattern is to use the convenience function

 `global_variables_initializer()` to add an Op to the graph that initializes

 all the variables. You then run that Op after launching the graph.

 ```python

 # Add an Op to initialize global variables.

 init_op = tf.global_variables_initializer()

 # Launch the graph in a session.

 with tf.Session() as sess:

     # Run the Op that initializes global variables.

     sess.run(init_op)

     # ...you can now run any Op that uses variable values...

 ```

 If you need to create a variable with an initial value dependent on another

 variable, use the other variable's `initialized_value()`. This ensures that

 variables are initialized in the right order.

 All variables are automatically collected in the graph where they are

 created. By default, the constructor adds the new variable to the graph

 collection `GraphKeys.GLOBAL_VARIABLES`. The convenience function

 `global_variables()` returns the contents of that collection.

 When building a machine learning model it is often convenient to distinguish

 between variables holding the trainable model parameters and other variables

 such as a `global step` variable used to count training steps. To make this

 easier, the variable constructor supports a `trainable=<bool>` parameter. If

 `True`, the new variable is also added to the graph collection

 `GraphKeys.TRAINABLE_VARIABLES`. The convenience function

 `trainable_variables()` returns the contents of this collection. The

 various `Optimizer` classes use this collection as the default list of

 variables to optimize.

 WARNING: tf.Variable objects have a non-intuitive memory model. A Variable is

 represented internally as a mutable Tensor which can non-deterministically

 alias other Tensors in a graph. The set of operations which consume a Variable

 and can lead to aliasing is undetermined and can change across TensorFlow

 versions. Avoid writing code which relies on the value of a Variable either

 changing or not changing as other operations happen. For example, using

 Variable objects or simple functions thereof as predicates in a `tf.cond` is

 dangerous and error-prone:

 ```

 v = tf.Variable(True)

 tf.cond(v, lambda: v.assign(False), my_false_fn)  # Note: this is broken.

 ```

 Here replacing tf.Variable with tf.contrib.eager.Variable will fix any

 nondeterminism issues.

 To use the replacement for variables which does

 not have these issues:

 * Replace `tf.Variable` with `tf.contrib.eager.Variable`;

 * Call `tf.get_variable_scope().set_use_resource(True)` inside a

   `tf.variable_scope` before the `tf.get_variable()` call.

 @compatibility(eager)

 `tf.Variable` is not compatible with eager execution.  Use

 `tf.contrib.eager.Variable` instead which is compatible with both eager

 execution and graph construction.  See [the TensorFlow Eager Execution

 guide](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/eager/python/g3doc/guide.md#variables-and-optimizers)

 for details on how variables work in eager execution.

 @end_compatibility

 """

 def __init__(self,

              initial_value=None,

              trainable=True,

              collections=None,

              validate_shape=True,

              caching_device=None,

              name=None,

              variable_def=None,

              dtype=None,

              expected_shape=None,

              import_scope=None,

              constraint=None):

   """Creates a new variable with value `initial_value`.

   The new variable is added to the graph collections listed in `collections`,

   which defaults to `[GraphKeys.GLOBAL_VARIABLES]`.

   If `trainable` is `True` the variable is also added to the graph collection

   `GraphKeys.TRAINABLE_VARIABLES`.

   This constructor creates both a `variable` Op and an `assign` Op to set the

   variable to its initial value.

   Args:

     initial_value: A `Tensor`, or Python object convertible to a `Tensor`,

       which is the initial value for the Variable. The initial value must have

       a shape specified unless `validate_shape` is set to False. Can also be a

       callable with no argument that returns the initial value when called. In

       that case, `dtype` must be specified. (Note that initializer functions

       from init_ops.py must first be bound to a shape before being used here.)

     trainable: If `True`, the default, also adds the variable to the graph

       collection `GraphKeys.TRAINABLE_VARIABLES`. This collection is used as

       the default list of variables to use by the `Optimizer` classes.

     collections: List of graph collections keys. The new variable is added to

       these collections. Defaults to `[GraphKeys.GLOBAL_VARIABLES]`.

     validate_shape: If `False`, allows the variable to be initialized with a

       value of unknown shape. If `True`, the default, the shape of

       `initial_value` must be known.

     caching_device: Optional device string describing where the Variable

       should be cached for reading.  Defaults to the Variable's device.

       If not `None`, caches on another device.  Typical use is to cache

       on the device where the Ops using the Variable reside, to deduplicate

       copying through `Switch` and other conditional statements.

     name: Optional name for the variable. Defaults to `'Variable'` and gets

       uniquified automatically.

     variable_def: `VariableDef` protocol buffer. If not `None`, recreates

       the Variable object with its contents, referencing the variable's nodes

       in the graph, which must already exist. The graph is not changed.

       `variable_def` and the other arguments are mutually exclusive.

     dtype: If set, initial_value will be converted to the given type.

       If `None`, either the datatype will be kept (if `initial_value` is

       a Tensor), or `convert_to_tensor` will decide.

     expected_shape: A TensorShape. If set, initial_value is expected

       to have this shape.

     import_scope: Optional `string`. Name scope to add to the

       `Variable.` Only used when initializing from protocol buffer.

     constraint: An optional projection function to be applied to the variable

       after being updated by an `Optimizer` (e.g. used to implement norm

       constraints or value constraints for layer weights). The function must

       take as input the unprojected Tensor representing the value of the

       variable and return the Tensor for the projected value

       (which must have the same shape). Constraints are not safe to

       use when doing asynchronous distributed training.

   Raises:

     ValueError: If both `variable_def` and initial_value are specified.

     ValueError: If the initial value is not specified, or does not have a

       shape and `validate_shape` is `True`.

     RuntimeError: If eager execution is enabled.

   @compatibility(eager)

   `tf.Variable` is not compatible with eager execution.  Use

   `tfe.Variable` instead which is compatible with both eager execution

   and graph construction.  See [the TensorFlow Eager Execution

   guide](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/eager/python/g3doc/guide.md#variables-and-optimizers)

   for details on how variables work in eager execution.

   @end_compatibility


相关文章
|
3月前
|
TensorFlow 算法框架/工具
Tensorflow学习笔记(二):各种tf类型的函数用法集合
这篇文章总结了TensorFlow中各种函数的用法,包括创建张量、设备管理、数据类型转换、随机数生成等基础知识。
49 0
|
5月前
|
机器学习/深度学习 人工智能 PyTorch
AI智能体研发之路-模型篇(五):pytorch vs tensorflow框架DNN网络结构源码级对比
AI智能体研发之路-模型篇(五):pytorch vs tensorflow框架DNN网络结构源码级对比
91 1
|
5月前
|
测试技术 数据库
探索JSF单元测试秘籍!如何让您的应用更稳固、更高效?揭秘成功背后的测试之道!
【8月更文挑战第31天】在 JavaServer Faces(JSF)应用开发中,确保代码质量和可维护性至关重要。本文详细介绍了如何通过单元测试实现这一目标。首先,阐述了单元测试的重要性及其对应用稳定性的影响;其次,提出了提高 JSF 应用可测试性的设计建议,如避免直接访问外部资源和使用依赖注入;最后,通过一个具体的 `UserBean` 示例,展示了如何利用 JUnit 和 Mockito 框架编写有效的单元测试。通过这些方法,不仅能够确保代码质量,还能提高开发效率和降低维护成本。
62 0
|
5月前
|
UED 开发者
哇塞!Uno Platform 数据绑定超全技巧大揭秘!从基础绑定到高级转换,优化性能让你的开发如虎添翼
【8月更文挑战第31天】在开发过程中,数据绑定是连接数据模型与用户界面的关键环节,可实现数据自动更新。Uno Platform 提供了简洁高效的数据绑定方式,使属性变化时 UI 自动同步更新。通过示例展示了基本绑定方法及使用 `Converter` 转换数据的高级技巧,如将年龄转换为格式化字符串。此外,还可利用 `BindingMode.OneTime` 提升性能。掌握这些技巧能显著提高开发效率并优化用户体验。
71 0
|
5月前
|
TensorFlow 算法框架/工具
【Tensorflow】图解tf.image.extract_patches的用法--提取图片特定区域
文章通过图解和示例详细解释了TensorFlow中tf.image.extract_patches函数的用法,展示了如何使用该函数从图像中提取特定区域或分割图像为多个子图像。
94 0
|
7月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
tensorflow的常用函数
tensorflow的常用函数
32 1
|
8月前
|
机器学习/深度学习 PyTorch TensorFlow
Pytorch 与 Tensorflow:深度学习的主要区别(1)
Pytorch 与 Tensorflow:深度学习的主要区别(1)
232 2
|
8月前
|
机器学习/深度学习 PyTorch TensorFlow
深度学习:Pytorch 与 Tensorflow 的主要区别(2)
深度学习:Pytorch 与 Tensorflow 的主要区别(2)
114 0
|
8月前
|
机器学习/深度学习 数据可视化 PyTorch
TensorFlow与PyTorch框架的深入对比:特性、优势与应用场景
【5月更文挑战第4天】本文对比了深度学习主流框架TensorFlow和PyTorch的特性、优势及应用场景。TensorFlow以其静态计算图、高性能及TensorBoard可视化工具适合大规模数据处理和复杂模型,但学习曲线较陡峭。PyTorch则以动态计算图、易用性和灵活性见长,便于研究和原型开发,但在性能和部署上有局限。选择框架应根据具体需求和场景。
|
8月前
|
机器学习/深度学习 PyTorch TensorFlow
【TensorFlow】TF介绍及代码实践
【4月更文挑战第1天】TF简介及代码示例学习
106 0