DL之DeepLabv1:DeepLabv1算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略

简介: DL之DeepLabv1:DeepLabv1算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略

DeepLabv1算法的简介(论文介绍)


     作者意识到FCN算法模型的局限性,因此,通过改进提出了DeepLabv1算法。


ABSTRACT  

      Deep Convolutional Neural Networks (DCNNs) have recently shown state of the  art performance in high level vision tasks, such as image classification and object  detection. This work brings together methods from DCNNs and probabilistic  graphical models for addressing the task of pixel-level classification (also called  ”semantic image segmentation”). We show that responses at the final layer of  DCNNs are not sufficiently localized for accurate object segmentation. This is  due to the very invariance properties that make DCNNs good for high level tasks.  We overcome this poor localization property of deep networks by combining the  responses at the final DCNN layer with a fully connected Conditional Random  Field (CRF). Qualitatively, our “DeepLab” system is able to localize segment  boundaries at a level of accuracy which is beyond previous methods. Quantitatively,  our method sets the new state-of-art at the PASCAL VOC-2012 semantic  image segmentation task, reaching 71.6% IOU accuracy in the test set. We show  how these results can be obtained efficiently: Careful network re-purposing and a  novel application of the ’hole’ algorithm from the wavelet community allow dense  computation of neural net responses at 8 frames per second on a modern GPU.

      深度卷积神经网络(DCNNs)最近在图像分类和目标检测等高级视觉任务中表现出了最先进的性能。这项工作结合了DCNNs和概率图形模型的方法来解决像素级分类(也称为“语义图像分割”)的任务。结果表明,对于精确的目标分割,DCNNs最后一层的响应没有得到足够的局部化。这是由于非常不变性的性质,使DCNNs适合高级任务。通过将DCNN最后一层的响应与完全连接的条件随机场(CRF)相结合,克服了深度网络的这种较差的定位特性。定性地说,我们的“DeepLab”系统能够以超出以往方法的精度水平定位段边界。量化地来说,我们的方法集新技术发展水平在PASCAL VOC-2012 语义图像分割任务,测试集的准确性达到71.6%的IOU。我们展示了可有效地获得这些结果:仔细的网络重新设计和一个新的应用小波社区的“孔”算法允许在现代GPU上以每秒8帧的速度密集计算神经网络响应。

DISCUSSION  

      Our work combines ideas from deep convolutional neural networks and fully-connected conditional  random fields, yielding a novel method able to produce semantically accurate predictions and detailed  segmentation maps, while being computationally efficient. Our experimental results show that  the proposed method significantly advances the state-of-art in the challenging PASCAL VOC 2012  semantic image segmentation task.  There are multiple aspects in our model that we intend to refine, such as fully integrating its two  main components (CNN and CRF) and train the whole system in an end-to-end fashion, similar to  Krahenb ¨ uhl & Koltun (2013); Chen et al. (2014); Zheng et al. (2015). We also plan to experiment ¨  with more datasets and apply our method to other sources of data such as depth maps or videos. Recently,  we have pursued model training with weakly supervised annotations, in the form of bounding  boxes or image-level labels (Papandreou et al., 2015).  At a higher level, our work lies in the intersection of convolutional neural networks and probabilistic  graphical models. We plan to further investigate the interplay of these two powerful classes of  methods and explore their synergistic potential for solving challenging computer vision tasks.

      我们的工作结合了深卷积神经网络和全连通条件随机场的思想,提出了一种新的方法,能够产生语义准确的预测和详细的分割地图,同时计算效率高。实验结果表明,该方法显著提高了PASCAL VOC 2012语义图像分割的水平。我们的模型中有很多方面是我们想要完善的,比如充分集成其两个主要组件(CNN和CRF),以端到端的方式训练整个系统,类似于Krahenb¨uhl & Koltun (2013);Chen等(2014);郑等(2015)。我们还计划用更多的数据集进行实验,并将我们的方法应用于其他数据源,如深度地图或视频。最近,我们以边界框或图像级标签的形式,采用弱监督注解进行模型训练(Papandreou et al., 2015)。在更高层次上,我们的工作是卷积神经网络和概率图形模型的交叉。我们计划进一步研究这两种功能强大的方法之间的相互作用,并探索它们在解决具有挑战性的计算机视觉任务方面的协同潜力。




论文

Liang-ChiehChen, George Papandreou, IasonasKokkinos, Kevin Murphy, Alan L. Yuille.

Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs, ICCV, 2015.

https://arxiv.org/abs/1412.7062


0、实验结果


1、在Titan GPU 上运行速度达到了8FPS,全连接CRF 平均推断需要0.5s


image.png


2、与最先进的模型在valset的比较


Comparisons with state-of-the-art models on the valset


image.png


First row: images. 第一行:图像

Second row: ground truths. 第二行:基本真理

Third row: other recent models (Left: FCN-8s, Right: TTI-Zoomout-16).其他最新型模型(左:FCN-8s,右:TTI-Zoomout-16)

Fourth row: our DeepLab-CRF.  我们的Deeplab CRF


3、VOC 2012 VAL可视化结果


Visualization results on VOC 2012-val

image.png



     For each row, we show the input image, the segmentation result delivered by the DCNN (DeepLab), and the refined segmentation result of the Fully Connected CRF (DeepLab-CRF).对于每一行,我们显示输入图像,DCNN (DeepLab)提供的分割结果,以及完全连接的CRF (DeepLab-CRF)的细化分割结果。


failure modes 失败的模型


image.png





1、FCN局限性及其改进


1、FCN局限性分析


池化层可增大神经元的感受野,提高分类精度,但导致特征图分辨率降低

倍率过大的上采样导致FCN的分割边界模糊

2、改进FCN


–仍以VGG-16为基础

–删去部分池化层(感受野变小)

–利用预训练的VGG-16在新网络上进行网络微调

–用带孔卷积(膨胀卷积)替换传统卷积(增大感受野,同时提升特征图的分辨率)

–利用全连接条件随机场提升分割边界的精度

–利用多尺度特征



DeepLabv1算法的架构详解


更新……








DeepLabv1算法的案例应用


更新……



 


相关文章
|
4天前
|
Kubernetes Cloud Native 持续交付
探索云原生架构:打造弹性可扩展的应用
【9月更文挑战第29天】在云计算的浪潮中,云原生架构成为企业追求高效、灵活和可靠服务的关键。本文将深入解析云原生的概念,探讨如何利用容器化、微服务和持续集成/持续部署(CI/CD)等技术构建现代化应用。我们将通过一个简易的代码示例,展示如何在Kubernetes集群上部署一个基于Node.js的应用,从而揭示云原生技术的强大能力和潜在价值。
15 6
|
5天前
|
监控 Cloud Native 持续交付
云原生架构:构建弹性与高效的现代应用##
随着云计算技术的不断成熟,云原生架构逐渐成为企业技术转型的重要方向。本文将深入探讨云原生的核心概念、主要技术和典型应用场景,以及如何通过云原生架构实现高可用性、弹性扩展和快速迭代,助力企业在数字化转型中保持竞争优势。 ##
23 6
|
6天前
|
运维 Cloud Native 持续交付
云原生架构:构建未来应用的基石
本文将深入探讨云原生架构的核心概念、主要优势以及实际应用案例,揭示其在现代IT领域的重要性。通过详细解析云原生技术的各个方面,帮助读者更好地理解和应用这一前沿技术。
|
7天前
|
前端开发 测试技术 API
探索微前端架构:构建现代化的前端应用
在软件开发中,传统单体架构已难以满足快速迭代需求,微前端架构应运而生。它将前端应用拆分成多个小型、独立的服务,每个服务均可独立开发、测试和部署。本文介绍微前端架构的概念与优势,并指导如何实施。微前端架构具备自治性、技术多样性和共享核心的特点,能够加速开发、提高可维护性,并支持灵活部署策略。实施步骤包括定义服务边界、选择架构模式、建立共享核心、配置跨服务通信及实现独立部署。尽管面临服务耦合、状态同步等挑战,合理规划仍可有效应对。
|
7天前
|
Cloud Native Devops 持续交付
探秘云原生架构:构建高效、灵活的现代应用
在当今数字化时代,企业面临着日益复杂的技术挑战和快速变化的业务需求。为了适应这种环境,云原生架构应运而生。本文将带您深入了解云原生的核心概念、关键技术和应用案例,揭示其在提升业务效率、降低运维成本方面的独特优势。通过阅读本文,您将获得关于如何利用云原生技术构建现代化应用的宝贵见解。
21 0
|
9天前
|
安全 应用服务中间件 API
微服务分布式系统架构之zookeeper与dubbo-2
微服务分布式系统架构之zookeeper与dubbo-2
|
9天前
|
负载均衡 Java 应用服务中间件
微服务分布式系统架构之zookeeper与dubbor-1
微服务分布式系统架构之zookeeper与dubbor-1
|
2月前
|
Kubernetes Cloud Native Docker
云原生之旅:从容器到微服务的架构演变
【8月更文挑战第29天】在数字化时代的浪潮下,云原生技术以其灵活性、可扩展性和弹性管理成为企业数字化转型的关键。本文将通过浅显易懂的语言和生动的比喻,带领读者了解云原生的基本概念,探索容器化技术的奥秘,并深入微服务架构的世界。我们将一起见证代码如何转化为现实中的服务,实现快速迭代和高效部署。无论你是初学者还是有经验的开发者,这篇文章都会为你打开一扇通往云原生世界的大门。
|
11天前
|
JSON 监控 安全
探索微服务架构中的API网关模式
【9月更文挑战第22天】在微服务架构的海洋中,API网关如同一位智慧的守门人,不仅管理着服务的进出,还维护着整个系统的秩序。本文将带你一探究竟,看看这位守门人是如何工作的,以及它为何成为现代云原生应用不可或缺的一部分。从流量控制到安全防护,再到服务聚合,我们将一起解锁API网关的秘密。
|
21天前
|
运维 Cloud Native Devops
云原生架构的崛起与实践云原生架构是一种通过容器化、微服务和DevOps等技术手段,帮助应用系统实现敏捷部署、弹性扩展和高效运维的技术理念。本文将探讨云原生的概念、核心技术以及其在企业中的应用实践,揭示云原生如何成为现代软件开发和运营的主流方式。##
云原生架构是现代IT领域的一场革命,它依托于容器化、微服务和DevOps等核心技术,旨在解决传统架构在应对复杂业务需求时的不足。通过采用云原生方法,企业可以实现敏捷部署、弹性扩展和高效运维,从而大幅提升开发效率和系统可靠性。本文详细阐述了云原生的核心概念、主要技术和实际应用案例,并探讨了企业在实施云原生过程中的挑战与解决方案。无论是正在转型的传统企业,还是寻求创新的互联网企业,云原生都提供了一条实现高效能、高灵活性和高可靠性的技术路径。 ##
27 3
下一篇
无影云桌面