ML之NB:利用NB朴素贝叶斯算法(CountVectorizer/TfidfVectorizer+去除停用词)进行分类预测、评估

简介: ML之NB:利用NB朴素贝叶斯算法(CountVectorizer/TfidfVectorizer+去除停用词)进行分类预测、评估

输出结果

image.png


image.png

image.png


设计思路

image.png


核心代码

class CountVectorizer Found at: sklearn.feature_extraction.text

class CountVectorizer(BaseEstimator, VectorizerMixin):

   """Convert a collection of text documents to a matrix of token counts

 

   This implementation produces a sparse representation of the counts using

   scipy.sparse.csr_matrix.

 

   If you do not provide an a-priori dictionary and you do not use an analyzer

   that does some kind of feature selection then the number of features will

   be equal to the vocabulary size found by analyzing the data.

 

   Read more in the :ref:`User Guide <text_feature_extraction>`.

 

   Parameters

   ----------

   input : string {'filename', 'file', 'content'}

   If 'filename', the sequence passed as an argument to fit is

   expected to be a list of filenames that need reading to fetch

   the raw content to analyze.

 

   If 'file', the sequence items must have a 'read' method (file-like

   object) that is called to fetch the bytes in memory.

 

   Otherwise the input is expected to be the sequence strings or

   bytes items are expected to be analyzed directly.

 

   encoding : string, 'utf-8' by default.

   If bytes or files are given to analyze, this encoding is used to

   decode.

 

   decode_error : {'strict', 'ignore', 'replace'}

   Instruction on what to do if a byte sequence is given to analyze that

   contains characters not of the given `encoding`. By default, it is

   'strict', meaning that a UnicodeDecodeError will be raised. Other

   values are 'ignore' and 'replace'.

 

   strip_accents : {'ascii', 'unicode', None}

   Remove accents during the preprocessing step.

   'ascii' is a fast method that only works on characters that have

   an direct ASCII mapping.

   'unicode' is a slightly slower method that works on any characters.

   None (default) does nothing.

 

   analyzer : string, {'word', 'char', 'char_wb'} or callable

   Whether the feature should be made of word or character n-grams.

   Option 'char_wb' creates character n-grams only from text inside

   word boundaries; n-grams at the edges of words are padded with space.

 

   If a callable is passed it is used to extract the sequence of features

   out of the raw, unprocessed input.

 

   preprocessor : callable or None (default)

   Override the preprocessing (string transformation) stage while

   preserving the tokenizing and n-grams generation steps.

 

   tokenizer : callable or None (default)

   Override the string tokenization step while preserving the

   preprocessing and n-grams generation steps.

   Only applies if ``analyzer == 'word'``.

 

   ngram_range : tuple (min_n, max_n)

   The lower and upper boundary of the range of n-values for different

   n-grams to be extracted. All values of n such that min_n <= n <= max_n

   will be used.

 

   stop_words : string {'english'}, list, or None (default)

   If 'english', a built-in stop word list for English is used.

 

   If a list, that list is assumed to contain stop words, all of which

   will be removed from the resulting tokens.

   Only applies if ``analyzer == 'word'``.

 

   If None, no stop words will be used. max_df can be set to a value

   in the range [0.7, 1.0) to automatically detect and filter stop

   words based on intra corpus document frequency of terms.

 

   lowercase : boolean, True by default

   Convert all characters to lowercase before tokenizing.

 

   token_pattern : string

   Regular expression denoting what constitutes a "token", only used

   if ``analyzer == 'word'``. The default regexp select tokens of 2

   or more alphanumeric characters (punctuation is completely ignored

   and always treated as a token separator).

 

   max_df : float in range [0.0, 1.0] or int, default=1.0

   When building the vocabulary ignore terms that have a document

   frequency strictly higher than the given threshold (corpus-specific

   stop words).

   If float, the parameter represents a proportion of documents, integer

   absolute counts.

   This parameter is ignored if vocabulary is not None.

 

   min_df : float in range [0.0, 1.0] or int, default=1

   When building the vocabulary ignore terms that have a document

   frequency strictly lower than the given threshold. This value is also

   called cut-off in the literature.

   If float, the parameter represents a proportion of documents, integer

   absolute counts.

   This parameter is ignored if vocabulary is not None.

 

   max_features : int or None, default=None

   If not None, build a vocabulary that only consider the top

   max_features ordered by term frequency across the corpus.

 

   This parameter is ignored if vocabulary is not None.

 

   vocabulary : Mapping or iterable, optional

   Either a Mapping (e.g., a dict) where keys are terms and values are

   indices in the feature matrix, or an iterable over terms. If not

   given, a vocabulary is determined from the input documents. Indices

   in the mapping should not be repeated and should not have any gap

   between 0 and the largest index.

 

   binary : boolean, default=False

   If True, all non zero counts are set to 1. This is useful for discrete

   probabilistic models that model binary events rather than integer

   counts.

 

   dtype : type, optional

   Type of the matrix returned by fit_transform() or transform().

 

   Attributes

   ----------

   vocabulary_ : dict

   A mapping of terms to feature indices.

 

   stop_words_ : set

   Terms that were ignored because they either:

 

   - occurred in too many documents (`max_df`)

   - occurred in too few documents (`min_df`)

   - were cut off by feature selection (`max_features`).

 

   This is only available if no vocabulary was given.

 

   See also

   --------

   HashingVectorizer, TfidfVectorizer

 

   Notes

   -----

   The ``stop_words_`` attribute can get large and increase the model size

   when pickling. This attribute is provided only for introspection and can

   be safely removed using delattr or set to None before pickling.

   """

   def __init__(self, input='content', encoding='utf-8',

       decode_error='strict', strip_accents=None,

       lowercase=True, preprocessor=None, tokenizer=None,

       stop_words=None, token_pattern=r"(?u)\b\w\w+\b",

       ngram_range=(1, 1), analyzer='word',

       max_df=1.0, min_df=1, max_features=None,

       vocabulary=None, binary=False, dtype=np.int64):

       self.input = input

       self.encoding = encoding

       self.decode_error = decode_error

       self.strip_accents = strip_accents

       self.preprocessor = preprocessor

       self.tokenizer = tokenizer

       self.analyzer = analyzer

       self.lowercase = lowercase

       self.token_pattern = token_pattern

       self.stop_words = stop_words

       self.max_df = max_df

       self.min_df = min_df

       if max_df < 0 or min_df < 0:

           raise ValueError("negative value for max_df or min_df")

       self.max_features = max_features

       if max_features is not None:

           if (not isinstance(max_features, numbers.Integral) or

               max_features <= 0):

               raise ValueError(

                   "max_features=%r, neither a positive integer nor None" %

                    max_features)

       self.ngram_range = ngram_range

       self.vocabulary = vocabulary

       self.binary = binary

       self.dtype = dtype

 

   def _sort_features(self, X, vocabulary):

       """Sort features by name

       Returns a reordered matrix and modifies the vocabulary in place

       """

       sorted_features = sorted(six.iteritems(vocabulary))

       map_index = np.empty(len(sorted_features), dtype=np.int32)

       for new_val, (term, old_val) in enumerate(sorted_features):

           vocabulary[term] = new_val

           map_index[old_val] = new_val

     

       X.indices = map_index.take(X.indices, mode='clip')

       return X

 

   def _limit_features(self, X, vocabulary, high=None, low=None,

       limit=None):

       """Remove too rare or too common features.

       Prune features that are non zero in more samples than high or less

       documents than low, modifying the vocabulary, and restricting it to

       at most the limit most frequent.

       This does not prune samples with zero features.

       """

       if high is None and low is None and limit is None:

           return X, set()

       # Calculate a mask based on document frequencies

       dfs = _document_frequency(X)

       tfs = np.asarray(X.sum(axis=0)).ravel()

       mask = np.ones(len(dfs), dtype=bool)

       if high is not None:

           mask &= dfs <= high

       if low is not None:

           mask &= dfs >= low

       if limit is not None and mask.sum() > limit:

           mask_inds = -tfs[mask].argsort()[:limit]

           new_mask = np.zeros(len(dfs), dtype=bool)

           new_mask[np.where(mask)[0][mask_inds]] = True

           mask = new_mask

       new_indices = np.cumsum(mask) - 1 # maps old indices to new

       removed_terms = set()

       for term, old_index in list(six.iteritems(vocabulary)):

           if mask[old_index]:

               vocabulary[term] = new_indices[old_index]

           else:

               del vocabulary[term]

               removed_terms.add(term)

     

       kept_indices = np.where(mask)[0]

       if len(kept_indices) == 0:

           raise ValueError("After pruning, no terms remain. Try a lower"

               " min_df or a higher max_df.")

       :kept_indices], removed_terms

   return X[

 

   def _count_vocab(self, raw_documents, fixed_vocab):

       """Create sparse feature matrix, and vocabulary where

        fixed_vocab=False

       """

       if fixed_vocab:

           vocabulary = self.vocabulary_

       else:

           # Add a new value when a new vocabulary item is seen

           vocabulary = defaultdict()

           vocabulary.default_factory = vocabulary.__len__

       analyze = self.build_analyzer()

       j_indices = []

       indptr = _make_int_array()

       values = _make_int_array()

       indptr.append(0)

       for doc in raw_documents:

           feature_counter = {}

           for feature in analyze(doc):

               try:

                   feature_idx = vocabulary[feature]

                   if feature_idx not in feature_counter:

                       feature_counter[feature_idx] = 1

                   else:

                       feature_counter[feature_idx] += 1

               except KeyError:

                   # Ignore out-of-vocabulary items for fixed_vocab=True

                   continue

         

           j_indices.extend(feature_counter.keys())

           values.extend(feature_counter.values())

           indptr.append(len(j_indices))

     

       if not fixed_vocab:

           # disable defaultdict behaviour

           vocabulary = dict(vocabulary)

           if not vocabulary:

               raise ValueError("empty vocabulary; perhaps the documents only"

                   " contain stop words")

       j_indices = np.asarray(j_indices, dtype=np.intc)

       indptr = np.frombuffer(indptr, dtype=np.intc)

       values = np.frombuffer(values, dtype=np.intc)

       X = sp.csr_matrix((values, j_indices, indptr),

           shape=(len(indptr) - 1, len(vocabulary)),

           dtype=self.dtype)

       X.sort_indices()

       return vocabulary, X

 

   def fit(self, raw_documents, y=None):

       """Learn a vocabulary dictionary of all tokens in the raw documents.

       Parameters

       ----------

       raw_documents : iterable

           An iterable which yields either str, unicode or file objects.

       Returns

       -------

       self

       """

       self.fit_transform(raw_documents)

       return self

 

   def fit_transform(self, raw_documents, y=None):

       """Learn the vocabulary dictionary and return term-document matrix.

       This is equivalent to fit followed by transform, but more efficiently

       implemented.

       Parameters

       ----------

       raw_documents : iterable

           An iterable which yields either str, unicode or file objects.

       Returns

       -------

       X : array, [n_samples, n_features]

           Document-term matrix.

       """

       # We intentionally don't call the transform method to make

       # fit_transform overridable without unwanted side effects in

       # TfidfVectorizer.

       if isinstance(raw_documents, six.string_types):

           raise ValueError(

               "Iterable over raw text documents expected, "

               "string object received.")

       self._validate_vocabulary()

       max_df = self.max_df

       min_df = self.min_df

       max_features = self.max_features

       vocabulary, X = self._count_vocab(raw_documents,

           self.fixed_vocabulary_)

       if self.binary:

           X.data.fill(1)

       if not self.fixed_vocabulary_:

           X = self._sort_features(X, vocabulary)

           n_doc = X.shape[0]

           max_doc_count = max_df if isinstance(max_df, numbers.Integral) else

            max_df * n_doc

           min_doc_count = min_df if isinstance(min_df, numbers.Integral) else

            min_df * n_doc

           if max_doc_count < min_doc_count:

               raise ValueError(

                   "max_df corresponds to < documents than min_df")

           X, self.stop_words_ = self._limit_features(X, vocabulary,

               max_doc_count,

               min_doc_count,

               max_features)

           self.vocabulary_ = vocabulary

       return X

 

   def transform(self, raw_documents):

       """Transform documents to document-term matrix.

       Extract token counts out of raw text documents using the vocabulary

       fitted with fit or the one provided to the constructor.

       Parameters

       ----------

       raw_documents : iterable

           An iterable which yields either str, unicode or file objects.

       Returns

       -------

       X : sparse matrix, [n_samples, n_features]

           Document-term matrix.

       """

       if isinstance(raw_documents, six.string_types):

           raise ValueError(

               "Iterable over raw text documents expected, "

               "string object received.")

       if not hasattr(self, 'vocabulary_'):

           self._validate_vocabulary()

       self._check_vocabulary()

       # use the same matrix-building strategy as fit_transform

       _, X = self._count_vocab(raw_documents, fixed_vocab=True)

       if self.binary:

           X.data.fill(1)

       return X

 

   def inverse_transform(self, X):

       """Return terms per document with nonzero entries in X.

       Parameters

       ----------

       X : {array, sparse matrix}, shape = [n_samples, n_features]

       Returns

       -------

       X_inv : list of arrays, len = n_samples

           List of arrays of terms.

       """

       self._check_vocabulary()

       if sp.issparse(X):

           # We need CSR format for fast row manipulations.

           X = X.tocsr()

       else:

           # We need to convert X to a matrix, so that the indexing

           # returns 2D objects

           X = np.asmatrix(X)

       n_samples = X.shape[0]

       terms = np.array(list(self.vocabulary_.keys()))

       indices = np.array(list(self.vocabulary_.values()))

       inverse_vocabulary = terms[np.argsort(indices)]

       return [inverse_vocabulary[X[i:].nonzero()[1]].ravel() for

           i in range(n_samples)]

 

   def get_feature_names(self):

       """Array mapping from feature integer indices to feature name"""

       self._check_vocabulary()

       return [t for t, i in sorted(six.iteritems(self.vocabulary_),

               key=itemgetter(1))]


相关文章
|
1月前
|
机器学习/深度学习 算法 数据库
KNN和SVM实现对LFW人像图像数据集的分类应用
KNN和SVM实现对LFW人像图像数据集的分类应用
34 0
|
15天前
|
机器学习/深度学习 自然语言处理 算法
|
8天前
|
机器学习/深度学习 算法 数据可视化
样条曲线、决策树、Adaboost、梯度提升(GBM)算法进行回归、分类和动态可视化
样条曲线、决策树、Adaboost、梯度提升(GBM)算法进行回归、分类和动态可视化
13 0
|
1月前
|
机器学习/深度学习 自然语言处理 搜索推荐
推荐系统的算法分类和操作流程介绍
推荐系统的算法分类和操作流程介绍
|
1月前
|
机器学习/深度学习 算法
机器学习与深度学习的算法分类
机器学习与深度学习的算法分类
|
2月前
|
算法 测试技术 C++
【数论】【分类讨论】【C++算法】1611使整数变为 0 的最少操作次数
【数论】【分类讨论】【C++算法】1611使整数变为 0 的最少操作次数
|
2月前
|
机器学习/深度学习 自然语言处理 算法
如何利用机器学习算法提高分类准确率
【2月更文挑战第7天】机器学习在现代科技中扮演着重要的角色。分类是其中一种基本的机器学习任务,而分类准确率是衡量分类模型好坏的重要指标。本文将介绍如何利用机器学习算法来提高分类准确率。
25 0
|
1月前
|
传感器 算法 计算机视觉
基于肤色模型和中值滤波的手部检测算法FPGA实现,包括tb测试文件和MATLAB辅助验证
该内容是关于一个基于肤色模型和中值滤波的手部检测算法的描述,包括算法的运行效果图和所使用的软件版本(matlab2022a, vivado2019.2)。算法分为肤色分割和中值滤波两步,其中肤色模型在YCbCr色彩空间定义,中值滤波用于去除噪声。提供了一段核心程序代码,用于处理图像数据并在FPGA上实现。最终,检测结果输出到&quot;hand.txt&quot;文件。
|
1月前
|
机器学习/深度学习 算法 计算机视觉
基于yolov2深度学习网络的视频手部检测算法matlab仿真
基于yolov2深度学习网络的视频手部检测算法matlab仿真
|
1月前
|
算法
【MATLAB】语音信号识别与处理:移动中位数滤波算法去噪及谱相减算法呈现频谱
【MATLAB】语音信号识别与处理:移动中位数滤波算法去噪及谱相减算法呈现频谱
23 2