输出结果
代码设计
import tensorflow as tf
import numpy as np
W = tf.Variable([[2,1,8],[1,2,5]], dtype=tf.float32, name='weights')
b = tf.Variable([[1,2,5]], dtype=tf.float32, name='biases')
init= tf.global_variables_initializer()
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(init)
save_path = saver.save(sess, "niu/save_net.ckpt")
print("Save to path: ", save_path)
#TF:利用TF的train.Saver载入曾经训练好的variables(W、b)以供预测新的数据
import tensorflow as tf
import numpy as np
W = tf.Variable(np.arange(6).reshape((2, 3)), dtype=tf.float32, name="weights")
b = tf.Variable(np.arange(3).reshape((1, 3)), dtype=tf.float32, name="biases")
saver = tf.train.Saver()
with tf.Session() as sess:
saver.restore(sess, "niu/save_net.ckpt")
print("weights:", sess.run(W))
print("biases:", sess.run(b))