【PyTorch】自定义数据集处理/dataset/DataLoader等

简介: 【PyTorch】自定义数据集处理/dataset/DataLoader等

问题

处理自定义数据集是应用PyTorch走向工程实际的重要前提,本文将持续更新介绍自定义数据集处理一些常见方法。

方法

加载自定义数据集并获取分类数量

from torchvision.datasets import ImageFolder
train_dataset = ImageFolder('D:\\data\\FD-dataset-challenge')
class_to_idx = train_dataset.class_to_idx
num_classes = len(class_to_idx)
print(class_to_idx) # {'fire': 0, 'no_fire': 1}
print(num_classes) # 2

消除控制台不影响程序运行的警告信息

import warnings
warnings.filterwarnings('ignore')
目录
相关文章
|
6月前
|
机器学习/深度学习 监控 算法
利用PyTorch处理个人数据集
如此看来,整个处理个人数据集的过程就像进行一场球赛。你设立球场,安排队员,由教练训练,最后你可以看到他们的表现。不断地学习,不断地调整,你的模型也会越来越厉害。 当然,这个过程看似简单,但在实际操作时可能会奇怪各种问题。需要你在实践中不断摸索,不断学习。可是不要怕,只要你热爱,不怕困难,你一定能驯服你的数据,让他们为你所用!
138 35
|
机器学习/深度学习 存储 PyTorch
PyTorch自定义学习率调度器实现指南
本文将详细介绍如何通过扩展PyTorch的 ``` LRScheduler ``` 类来实现一个具有预热阶段的余弦衰减调度器。我们将分五个关键步骤来完成这个过程。
692 2
|
机器学习/深度学习 人工智能 PyTorch
|
机器学习/深度学习 算法 PyTorch
【从零开始学习深度学习】38. Pytorch实战案例:梯度下降、随机梯度下降、小批量随机梯度下降3种优化算法对比【含数据集与源码】
【从零开始学习深度学习】38. Pytorch实战案例:梯度下降、随机梯度下降、小批量随机梯度下降3种优化算法对比【含数据集与源码】
|
并行计算 PyTorch 算法框架/工具
基于CUDA12.1+CUDNN8.9+PYTORCH2.3.1,实现自定义数据集训练
文章介绍了如何在CUDA 12.1、CUDNN 8.9和PyTorch 2.3.1环境下实现自定义数据集的训练,包括环境配置、预览结果和核心步骤,以及遇到问题的解决方法和参考链接。
824 4
基于CUDA12.1+CUDNN8.9+PYTORCH2.3.1,实现自定义数据集训练
|
机器学习/深度学习 资源调度 PyTorch
【从零开始学习深度学习】15. Pytorch实战Kaggle比赛:房价预测案例【含数据集与源码】
【从零开始学习深度学习】15. Pytorch实战Kaggle比赛:房价预测案例【含数据集与源码】
|
机器学习/深度学习 算法 PyTorch
【从零开始学习深度学习】45. Pytorch迁移学习微调方法实战:使用微调技术进行2分类图片热狗识别模型训练【含源码与数据集】
【从零开始学习深度学习】45. Pytorch迁移学习微调方法实战:使用微调技术进行2分类图片热狗识别模型训练【含源码与数据集】
|
2月前
|
机器学习/深度学习 数据采集 人工智能
PyTorch学习实战:AI从数学基础到模型优化全流程精解
本文系统讲解人工智能、机器学习与深度学习的层级关系,涵盖PyTorch环境配置、张量操作、数据预处理、神经网络基础及模型训练全流程,结合数学原理与代码实践,深入浅出地介绍激活函数、反向传播等核心概念,助力快速入门深度学习。
178 1
|
6月前
|
机器学习/深度学习 PyTorch API
PyTorch量化感知训练技术:模型压缩与高精度边缘部署实践
本文深入探讨神经网络模型量化技术,重点讲解训练后量化(PTQ)与量化感知训练(QAT)两种主流方法。PTQ通过校准数据集确定量化参数,快速实现模型压缩,但精度损失较大;QAT在训练中引入伪量化操作,使模型适应低精度环境,显著提升量化后性能。文章结合PyTorch实现细节,介绍Eager模式、FX图模式及PyTorch 2导出量化等工具,并分享大语言模型Int4/Int8混合精度实践。最后总结量化最佳策略,包括逐通道量化、混合精度设置及目标硬件适配,助力高效部署深度学习模型。
936 21
PyTorch量化感知训练技术:模型压缩与高精度边缘部署实践
|
1月前
|
边缘计算 人工智能 PyTorch
130_知识蒸馏技术:温度参数与损失函数设计 - 教师-学生模型的优化策略与PyTorch实现
随着大型语言模型(LLM)的规模不断增长,部署这些模型面临着巨大的计算和资源挑战。以DeepSeek-R1为例,其671B参数的规模即使经过INT4量化后,仍需要至少6张高端GPU才能运行,这对于大多数中小型企业和研究机构来说成本过高。知识蒸馏作为一种有效的模型压缩技术,通过将大型教师模型的知识迁移到小型学生模型中,在显著降低模型复杂度的同时保留核心性能,成为解决这一问题的关键技术之一。

热门文章

最新文章

推荐镜像

更多