带你读《5G 无线增强设计与国际标准》第三章增强多天线技术3.3多点传输协作(一)-阿里云开发者社区

开发者社区> 人民邮电出版社> 正文

带你读《5G 无线增强设计与国际标准》第三章增强多天线技术3.3多点传输协作(一)

简介: 带你读《5G 无线增强设计与国际标准》第三章增强多天线技术3.3多点传输协作
+关注继续查看

3.3.1 基本原理

 为了改善小区边缘的覆盖,在服务区内提供更为均衡的服务质量,多点协作在NR系统中仍然是一种重要的技术手段。考虑到 NR系统的部署条件、频段及天线形态,多点协作传输技术在 NR系统中的应用具有更显著的现实意义。首先,从网络形态角度考虑,以大量的分布式接入点+基带集中处理的方式进行网络部署将更加有利千提供均衡的用户体验速率,并且显著地降低越区切换带来的时延和信令开销。随着频段的升高,从保证网络覆盖的角度出发,也需要相对密集的接入点部署。而在高频段,随着有源天线设备集成度的提高,将更加倾向千采用模块化的有源天线阵列。每个发射及接收点(TRP,Transmission   and   Reception   Point)的天线阵可以被分为若千个相对独立的天线子阵或面板(Pannel),因此整个阵面的形态和端口数都可以随部署场景与业务需求进行灵活调整。而 Panel或 TRP之间也可以由光纤连接,进行更为灵活的分布式部署。在毫米波波段,随着波长的减小,人体或车辆等障碍物所产生的阻挡效应将更为显著。这种情况下,从保障链路连接稳健性的角度出发,也可以利用多个TRP或 Panel之间的协作,从多个角度的多个波束进行传输/接收,以降低阻挡效应带来的不利影响。

根据发送信号流到多个 TRP/Panel上的映射关系,多点协作传输技术可以大致分为相千和非相千传输两种。相千传输时,每个数据层会通过加权向量映射到参与协作的多个 TRP/Panel之上。如果各个 TRP/Panel的信道大尺度参数相同,而且使用了相同的频率源,那么相千传输等效千将多个子阵拼接成为更高维度的虚拟阵列,从而能够获得更高的赋形/预编码/复用增益。但是,在实际的部署环境中,这种方式对千TRP之间的同步以及回程链路的传输能力有着更高的要求,对很多非理想因素都较为敏感。

相对而言,非相千联合传输(NC-JT,Non-Coherent   Joint   Transmission)受上述因素的影响较小,因此  经是R15多点协作传输技术的重点考虑方案[16-17]。所   非相千联合传输,是指每个数据流只映射到信道大尺度参数一致(QCL)的 TRP/Panel所对应的端口上,不同的数据流可以被映射到大尺度参数不同的端口上,而不需要将所有的TRP统一作为一个虚拟阵列处理。

考虑到多点协作传输在不同回程链路能力和业务需求条件下的潜在应用,R16多点协作传输方案可以分为S-DCI(Single-DCI)方案、M-DCI(Multi-DCI)方案以及基千多点协作传输的 URLLC增强方案三大类[18-19]

·S-DCI即通过单个PDCCH调度一个 PDSCH,该 PDSCH的不同的数据层可以被映射到不同或相同的 TRP 上去,但是每个数据层不能被映射到不同的 TRP/Panel 上去。这种方案适用于回程链路较为理想,TRP/Panel 之间可以进行更为动态的紧密协作的情况。S-DCI部分的相 内容在3.3.2节 进行介绍。


 

·M-DCI即通过多个 PDCCH分别调度各自的 PDSCH的传输方案,这种情况下每个PDSCH只通过一个TRP/Panel进行传输。从提升频率选择性调度增益的角度考虑,当多个传输点的信道大尺度参数存在差异时,应当为来自不同TRP/Panel的链路分配不同的时频资源。 依照现有的单 PDSCH结构及相 控制信令,还无法支持为不同数据层/码字分配不同资源的调度方式。针对这一问题,在 M-DCI方案 可以支持通过多个独立调度的 PDSCH 向同一个用户发送数据的 NC-JT 方式。M-DCI 方案 ,各 TRP的调度和传输过程相对独立,对回程链路的依赖程度也较弱。因此,相对   言,该方案更加适合回程链路非理想的应用场景。同时,相较于S-DCI方案,M-DCI方案 的各 TRP可以,据每个 TRP的信道传播特性独立地进行调制编码控制,具有更高的灵活性。但是,在M-DCI方案 ,各PDSCH的资源可能不完全重叠,会影响NC-JT的空间复用增益。M-DCI部分的相 内容在 3.3.3节 进行介绍。

·除了传统的eMBB业务之外,利用多TRP/Panel提升传输可靠性/降低传输时延也是多点协作传输的重要应用。尤其考虑到高频段应用   ,阻挡效应会对信息传播的可靠性与时延带来显著影响。这种情况下,利用空间相 性较弱的不同TRP/Panel传输冗余的信息丁有利于 URLLC业务传输性能的提升。 空域的重复或冗余传输还可与时域、频域的重复或冗余传输相结合以进一步改善 URLLC传输的性能。URLLC增强部分的相

内容在 3.3.4节 进行介绍。

 

3.3.2   S-DCI方案

 

1.    整体方案

 

如前所述,基千 S-DCI的 NC-JT方案中,同一 PDSCH的每个数据流只映射到一个TRP/Panel上去。这种传输方式对千回程链路的能力具有较高的要求,因而只能适用千回程链路较为理想的场景。相对千单点传输而言,利用不同的站点发送不同的数据流使得数据流间的空间特性差异更为明显,从而更易千在终端侧进行分离。因此,即使对千边缘用户也有可能支待多流并行传输,从而可以改善边缘频谱效率。

S-DCI方案主要涉及以下几点。

·码字映射方案:S-DCI 方案 ,由于调度由单个 PDCCH 控制,如果两个 TRP的信道特性差异较大,从理论上讲,更适合采用每个 TRP 独立调整调制编码(MCS)的方式。但是,R16的设计需要以 R15已有设计为基础,受各种因素所限,R16设计基本沿用现有机制。

·DMRS分配指示方案:,据R15 的 DMRS设计,为了保证 CDM组内 DMRS端口之间的正交性,要求在每个CDM组内的DMRS端口是QCL的。在NC-JT传输 ,两组数据流分别通过对应的TRP/Panel发出,从不同的TRP/Panel观测到的信道大尺度特性是不同的(QCL不同)。这种情况下,就要求DMRS的分配指示能够支持跨 CDM组的方式(所分配的 DMRS端口集合分布在不同的 CDM组)。同时 DMRS端口分配指示方案还需要考虑到各TRP传输的数据层数的灵活组合问题。

·TCI状态指示与映射方案:NC-JT传输 ,不同组的数据层来自 QCL不同的TRP/Panel,因此需要能够指示最多两个 TCI 状态。当指示了两个 TCI 状态时,CDM组和 TCI状态之间的映射 系可能会涉及 TRP间的数据层数组合能力。对于 FR2,调度时间门限内的默认 QCL参考也是需要考虑的。

·除了这些问题之外,针对NC-JT的CSI反馈方案也是需要考虑的问题,具体如基于R15的CSI框架进行改进和按照NC-JT传输的假设计算并上报CSI的方法。但是由于多点协作传输技术涉及的范围比较广, 会议时间又相对紧张,R16没有引入针对多点协作传输的 CSI反馈增强技术方案。

 

2.    码字映射方案

 

R15NRMIMO的码字到数据层的映射方案为:在 rank=1~4的范围内采用单码字传输,而在rank=5~8的传输时才能够采用双码字方式。考虑到中低 rank(rank=1~4)是多流传输的主要使用场景,这一结论实际上在很大程度上制约了双码字传输的应用。

R15的码字映射规则对千S-DCI传输方案也存在明显的影响。根据该规则,rank=2~ 4的 NC-JT传输时,只能使用一个码字。即使不同 TRP的信道条件有显著的差异,也只能使用一个统一的 MCS,这会影响链路自适应的性能。即使对千 rank=5~8的双码字传输,R15方案也无法保证同一个码字的所有数据层通过相同的 TRP发送。例如,如图 3-1所示,对千 DMRSConfigurationType2,当前置 DMRS符号数最多为 2且 DMRS端口分配指示为 Value=2时,所分配的 DMRS端口为{0, 1, 2, 3, 6}。根据 R15定义的 DMRS端口的 CDM分组,端口 0、1、6属千 CDM组 0,而端口2、3属千 CDM组 1。此外,在执行数据层到 DMRS端口的映射过程中,数据层与 DMRS端口都是简单地按照升序排列的。根据以上规则,码字0对应的 2数据层被映射到 CDM组 0,而码字 1对应的 3数据层会被分散到两个 CDM组中(见图 3-1OrderA)。

实际上,如果对 DMRS端口集合进行简单的重排顺序就可以避免以上问题。例如,在 OrderB中,将 DMRS端口排列为 23016,这样就可以保证码字 0和码字 1都只映射到一个 CDM组中,从而可以避免将一个码字的各个数据层分散到多个 TRP的情况。与之类似,对千其他的DMRSConfiguration和最大前置 DMRS符号数的配置组合,也可采用这样的方法,保证双码字传输时,每个码字对应的数据层都被约束在一个 CDM组内。

image.png

3-1   DMRS端口排序NC-JT的影响

 

尽管对千基千 S-DCI方式的 NC-JT传输而言,R15的码字映射规则对性能提升存在一定的制约,但是试图在 R16就推翻历经反复争论而确立的 R15的码字映射规则非常困难。而如果沿用 R15的码字映射规则,对千 S-DCI的 NC-JT而言,能够优化的空间就非常有限。这种情况下,只能考虑对 rank=5~8的双码字传输进行优化。例如,通过如上所述的端口顺序重新排列,保证每个码字只通过一个TRP传输。但是,考虑到高阶传输对千边缘覆盖(NC-JT的主要应用场景)而言并不常见。因此,R16的码字到数据层的映射关系以及数据层到 DMRS端口的映射规则都完整地沿用了 R15定义的规则。


版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
使用NAT网关轻松为单台云服务器设置多个公网IP
在应用中,有时会遇到用户询问如何使单台云服务器具备多个公网IP的问题。 具体如何操作呢,有了NAT网关这个也不是难题。
22593 0
怎么设置阿里云服务器安全组?阿里云安全组规则详细解说
阿里云服务器安全组设置规则分享,阿里云服务器安全组如何放行端口设置教程
6847 0
使用OpenApi弹性释放和设置云服务器ECS释放
云服务器ECS的一个重要特性就是按需创建资源。您可以在业务高峰期按需弹性的自定义规则进行资源创建,在完成业务计算的时候释放资源。本篇将提供几个Tips帮助您更加容易和自动化的完成云服务器的释放和弹性设置。
7737 0
windows server 2008阿里云ECS服务器安全设置
最近我们Sinesafe安全公司在为客户使用阿里云ecs服务器做安全的过程中,发现服务器基础安全性都没有做。为了为站长们提供更加有效的安全基础解决方案,我们Sinesafe将对阿里云服务器win2008 系统进行基础安全部署实战过程! 比较重要的几部分 1.
5412 0
腾讯云服务器 设置ngxin + fastdfs +tomcat 开机自启动
在tomcat中新建一个可以启动的 .sh 脚本文件 /usr/local/tomcat7/bin/ export JAVA_HOME=/usr/local/java/jdk7 export PATH=$JAVA_HOME/bin/:$PATH export CLASSPATH=.
2121 0
阿里云服务器如何登录?阿里云服务器的三种登录方法
购买阿里云ECS云服务器后如何登录?场景不同,云吞铺子总结大概有三种登录方式: 登录到ECS云服务器控制台 在ECS云服务器控制台用户可以更改密码、更换系统盘、创建快照、配置安全组等操作如何登录ECS云服务器控制台? 1、先登录到阿里云ECS服务器控制台 2、点击顶部的“控制台” 3、通过左侧栏,切换到“云服务器ECS”即可,如下图所示 通过ECS控制台的远程连接来登录到云服务器 阿里云ECS云服务器自带远程连接功能,使用该功能可以登录到云服务器,简单且方便,如下图:点击“远程连接”,第一次连接会自动生成6位数字密码,输入密码即可登录到云服务器上。
16745 0
472
文章
0
问答
文章排行榜
最热
最新
相关电子书
更多
文娱运维技术
立即下载
《SaaS模式云原生数据仓库应用场景实践》
立即下载
《看见新力量:二》电子书
立即下载