AIACC加速Bert Finetune最佳实践

简介: 本方案适用于自然语言训练场景,使用GPU云服务器+极速型NAS进行BertFinetune的模型训练,使用AIACC可以有效提升多机多卡的训练效率。

直达最佳实践:【AIACC加速Bert Finetune最佳实践
最佳实践频道:【最佳实践频道
这里有丰富的企业上云最佳实践,从典型场景入门,提供一系列项目实践方案,降低企业上云门槛的同时满足您的需求!

场景描述

本最佳实践适用于自然语言处理的AI训练场景,尤其是对性能要求苛刻,业务交付紧迫的场景。自然语言处理(NLP)就是在机器语言和人类语言之间搭建沟通的桥梁,以实现人机交流的目的。自然语言处理的训练场景,训练出的模型可以用于预测、分类、文本分析和文本对答等。

解决问题

1、使用GPU云服务器搭建训练环境
2、使用性能性NAS存储共享的训练数据
3、使用AIACC加速训练

产品列表

  • GPU云服务器
  • 极速型NAS
  • 专有网络VPC

业务架构

193.png

直达最佳实践 》》

bp193.png

相关文章
|
机器学习/深度学习 数据采集 自然语言处理
EasyNLP集成K-BERT算法,借助知识图谱实现更优Finetune
EasyNLP集成K-BERT算法,,使⽤户在具有知识图谱的情况下,取得更好的模型Finetune效果。
|
存储 网络安全 文件存储
AIACC加速Bert Fine tune最佳实践
本方案适用于自然语言训练场景,使用GPU云服务器+极速型NAS进行Bert Fine tune的模型训练,使用AIACC可以有效提升多机多卡的训练效率。
AIACC加速Bert Fine tune最佳实践
|
PyTorch 算法框架/工具
Bert Pytorch 源码分析:五、模型架构简图 REV1
Bert Pytorch 源码分析:五、模型架构简图 REV1
318 0
|
PyTorch 算法框架/工具
Bert Pytorch 源码分析:五、模型架构简图
Bert Pytorch 源码分析:五、模型架构简图
253 0
|
4月前
|
机器学习/深度学习 数据采集 人工智能
35_BERT与RoBERTa:优化编码器模型
2018年,Google发布的BERT(Bidirectional Encoder Representations from Transformers)模型彻底改变了自然语言处理领域的格局。作为第一个真正意义上的双向预训练语言模型,BERT通过创新的掩码语言模型(Masked Language Model, MLM)预训练策略,使模型能够同时从左右两侧的上下文信息中学习语言表示,从而在多项NLP任务上取得了突破性进展。
|
8月前
|
存储 机器学习/深度学习 自然语言处理
避坑指南:PAI-DLC分布式训练BERT模型的3大性能优化策略
本文基于电商搜索场景下的BERT-Large模型训练优化实践,针对数据供给、通信效率与计算资源利用率三大瓶颈,提出异步IO流水线、梯度压缩+拓扑感知、算子融合+混合精度等策略。实测在128卡V100集群上训练速度提升3.2倍,GPU利用率提升至89.3%,训练成本降低70%。适用于大规模分布式深度学习任务的性能调优。
393 3
|
机器学习/深度学习 人工智能 自然语言处理
昇腾AI行业案例(四):基于 Bert 模型实现文本分类
欢迎学习《昇腾行业应用案例》的“基于 Bert 模型实现文本分类”实验。在本实验中,您将学习如何使用利用 NLP (natural language processing) 领域的AI模型来构建一个端到端的文本系统,并使用开源数据集进行效果验证。为此,我们将使用昇腾的AI硬件以及CANN等软件产品。
991 0
|
自然语言处理 PyTorch 算法框架/工具
掌握从零到一的进阶攻略:让你轻松成为BERT微调高手——详解模型微调全流程,含实战代码与最佳实践秘籍,助你应对各类NLP挑战!
【10月更文挑战第1天】随着深度学习技术的进步,预训练模型已成为自然语言处理(NLP)领域的常见实践。这些模型通过大规模数据集训练获得通用语言表示,但需进一步微调以适应特定任务。本文通过简化流程和示例代码,介绍了如何选择预训练模型(如BERT),并利用Python库(如Transformers和PyTorch)进行微调。文章详细说明了数据准备、模型初始化、损失函数定义及训练循环等关键步骤,并提供了评估模型性能的方法。希望本文能帮助读者更好地理解和实现模型微调。
1356 2
掌握从零到一的进阶攻略:让你轻松成为BERT微调高手——详解模型微调全流程,含实战代码与最佳实践秘籍,助你应对各类NLP挑战!
|
机器学习/深度学习 自然语言处理 知识图谱

热门文章

最新文章