机器学习助推医疗服务向质高价廉转变

简介:

机器学习不仅能大幅削减成本,而且几乎能实时获取诊断结果;通过运用四种机器学习的算法,还能让医生尽早干预疾病风险的发生;将来更加廉价、更易获得、质量更高的医疗将会推动机器学习算法技术成为主流,同时也会提高对医生自身的要求。

疾病诊断是医疗系统中更偏向于劳动密集型的工作之一,恰好,它也是机器学习算法的擅长领域。尽管这一领域的工作还处于早期发展阶段,但这项技术正在迅速发展,并似乎准备转变为一项“诊断医学”。

随着机器学习在医疗领域应用的不断加深,越来越多的机器学习应用在医疗诊断的案例涌现。大部分的诊断数据都是基于图像的,比如X射线、磁共振,以及超声波图像,也包括基因组概况、流行病学数据、血液检测、活检结果,甚至是医疗研究论文。因此,这为训练神经网络和其他机器学习技术提供大量的数据。

疾病预测:早发现早治疗

普通医疗体系不能永远保持精确又快速的诊断,但机器学习不仅能大幅削减成本,其诊断结果几乎能实时获取。越来越多的情况下,机器学习能够比老练的医生提供更准确的诊断。

例如,MIT Technology Review近期的一份报告指出,Hongyoon Choi和Hwan在韩国高级科学和技术研究所Cheonan公共卫生中心和Kyong Hwan研发的深度卷积神经网络(CNN),它仅仅通过PET(正电子发射断层显像)的大脑扫描,就能够准确判断出患者是否具有三年内患上阿尔茨海默病的趋势。

Hongyoon和Kyong利用那些具有轻度认知障碍、易发展为阿尔茨海默氏症的患者的脑图像数据集预测该疾病,准确度高达84%。

早发现早治疗是降低大多数疾病治疗成本甚至逆转诊断结果的关键。

就阿尔茨海默症而言,能在症状恶化前延缓病情发展。在美国,老年痴呆症在众多死亡原因中排行第六。据估计,2017年老年痴呆症的护理成本会达到259亿美元。预计到2050年,这一数字将飙升至1.1万亿美元。

同样,皮肤癌如果在早期检测结果是5年内生存率97%,那么在晚期检测中的结果则会下降到14%。

这样悬殊的数据促使斯坦福研究人员开发了深度学习算法,并使其成为了一种潜在的生命保护程序。斯坦福人工智能实验室的教授塞巴斯蒂安·史朗(Sebastian Thrun)领导的团队开发了卷积神经网络模型,这个模型可以像训练有素的皮肤科医生一样熟练识别角质形成细胞和黑色素恶性肿瘤。

他们在《自然》杂志发表的论文中指出,深度卷积神经网络“在这识别角质形成细胞和黑色素恶性肿瘤时与所有经过测试的专家表现不相上下,深度卷积神经网络展现出一种堪比皮肤科医生专业能力能够将皮肤癌分类水平的智能。”

大数据处理:助力数据运用效率提升

早期发现全世界死亡的头号原因——心脏病的情况也是如此。诺丁汉大学研究发现,一套评估心血管病风险的机器学习算法胜过了美国心脏病学院(ACC)建立的非机器学习算法。

IBM Watson是首批运用机器学习算法的组织之一,但专注于机器算法的医疗机构每天都在继续增长。人体是极端复杂的,医生们可以尽最大努力去诊断病情,但他们无法保证能正确地检测出任何一种疾病,比如心脏病发作时。

在这种情况下,医生扫描了378256条医疗数据,该数据就会被应用到基于不同机器学习技术的四种算法:随机森林、logistic回归、梯度提升和神经网络。目标是预测某人十年内心脏病发作或中风的几率。

与美国心脏病学院既定算法的预测相比,结果显示,这四款机器学习算法在预测心血管疾病方面比ACC的算法做得更好,其中神经网络技术则表现最佳。“研究表明,通过改善确定为高危患者的数量,让医生尽早干预来预防心脏骤停和中风这类事件发生,人工智能在其中起了很大的作用。”

临床应用:机器学习的落地<余下全文<

目录
相关文章
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与机器学习在医疗诊断中的应用
【9月更文挑战第32天】随着科技的不断发展,人工智能和机器学习已经在许多领域得到了广泛应用。在医疗领域,它们正在改变着医生和患者的生活。通过分析大量的医疗数据,AI可以帮助医生更准确地诊断疾病,预测患者的病情发展,并提供个性化的治疗方案。本文将探讨人工智能和机器学习在医疗诊断中的具体应用,包括图像识别、自然语言处理和预测分析等方面。我们还将讨论AI技术面临的挑战和未来的发展趋势。
|
1月前
|
机器学习/深度学习 数据采集 自然语言处理
【机器学习】大模型驱动下的医疗诊断应用
摘要: 随着科技的不断发展,机器学习在医疗领域的应用日益广泛。特别是在大模型的驱动下,机器学习为医疗诊断带来了革命性的变化。本文详细探讨了机器学习在医疗诊断中的应用,包括疾病预测、图像识别、基因分析等方面,并结合实际案例进行分析。同时,还展示了部分相关的代码示例,以更好地理解其工作原理。
61 3
【机器学习】大模型驱动下的医疗诊断应用
|
1月前
|
机器学习/深度学习 安全 算法
机器学习【医疗领域及其药品搭建】
机器学习【医疗领域及其药品搭建】
62 10
|
1月前
|
机器学习/深度学习 人工智能 算法
人工智能与机器学习在医疗诊断中的应用
【10月更文挑战第3天】人工智能与机器学习在医疗诊断中的应用
49 3
|
3月前
|
机器学习/深度学习 数据采集 人工智能
机器学习在医疗诊断中的应用:开启智慧医疗新时代
【8月更文挑战第5天】机器学习革新医疗诊断,提升精准度与效率。通过分析医学影像和基因数据,实现疾病早期检测与个性化治疗。在药物研发中,加速候选药物筛选与优化过程。智能化患者管理及智能辅助决策系统进一步增强医疗服务质量。面对数据质量和隐私保护挑战,持续技术创新推动智慧医疗发展。
|
3月前
|
前端开发 开发者 设计模式
揭秘Uno Platform状态管理之道:INotifyPropertyChanged、依赖注入、MVVM大对决,帮你找到最佳策略!
【8月更文挑战第31天】本文对比分析了 Uno Platform 中的关键状态管理策略,包括内置的 INotifyPropertyChanged、依赖注入及 MVVM 框架。INotifyPropertyChanged 方案简单易用,适合小型项目;依赖注入则更灵活,支持状态共享与持久化,适用于复杂场景;MVVM 框架通过分离视图、视图模型和模型,使状态管理更清晰,适合大型项目。开发者可根据项目需求和技术栈选择合适的状态管理方案,以实现高效管理。
45 0
|
3月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
TensorFlow Serving 部署指南超赞!让机器学习模型上线不再困难,轻松开启高效服务之旅!
【8月更文挑战第31天】TensorFlow Serving是一款高性能开源服务系统,专为部署机器学习模型设计。本文通过代码示例详细介绍其部署流程:从安装TensorFlow Serving、训练模型到配置模型服务器与使用gRPC客户端调用模型,展示了一站式模型上线解决方案,使过程变得简单高效。借助该工具,你可以轻松实现模型的实际应用。
57 0
|
4月前
|
测试技术
8B尺寸达到GPT-4级性能!北大等提出医疗专家模型训练方法
【7月更文挑战第8天】北京大学等研究者提出的新方法缓解了大模型如Llama-3-8B在持续预训练时的“稳定性差距”,通过多轮次训练、高质量子语料库选择和数据混合策略,提升性能和效率。在医疗领域,他们将OpenLlama-3B性能提升至40.7%,并创建的Llama-3-Physician模型达到GPT-4级别。尽管取得突破,该方法在其他模型和领域的适用性仍需探索,且持续预训练仍资源密集。[链接: https://arxiv.org/abs/2406.14833]
91 25
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
基于PAI-QuickStart搭建一站式模型训练服务体验
【8月更文挑战第5天】基于PAI-QuickStart搭建一站式模型训练服务体验
132 0
|
4月前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习在医疗诊断中的应用
【7月更文挑战第23天】随着人工智能技术的飞速发展,机器学习已经成为推动现代医学革新的关键力量。本文将深入探讨机器学习如何在医疗诊断领域发挥作用,包括疾病预测、影像分析以及个性化治疗等方面。通过具体案例,我们将展示机器学习技术如何提高诊断的准确性和效率,同时讨论其在实际应用中面临的挑战与限制。
下一篇
无影云桌面