一文简介常见的机器学习算法

简介:
本文来自AI新媒体量子位(QbitAI)

e206f3c2b1b8aed6125d72af19c928af6ae5cacd

所谓机器学习算法就是一个假设集合,用于找到最优模型。机器学习算法可以分为三大类。

  • 监督学习:输入特征和输出标签都被定义
  • 无监督学习:数据集未标注,目标是发现隐藏关系
  • 强化学习:某种形式的反馈回路,有些参数需要优化

这篇文章尝试对一些常见和流行的机器学习算法,进行简单的介绍。

普通最小二乘线性回归

5031c25136ad255caa884336baeb49d86973deba

  • 线性回归的目标,是拟合一条线,穿过训练集数据分布的区域,并且与大多数点的距离最短
  • 在简单线性回归中,回归线最小化与各点距离的总和,即“残差平方”的总和。因此,这种方法也被称为“普通最小二乘”
  • 在多维数据的情况下,也可以实现线性回归。不过在这种情况夏,“线”只是维度为N-1的高维平面,而N是数据集的维度

逻辑回归

e3219ab32340a4801ac8fa81ab49117264f507ed

  • 逻辑回归虽然名为回归,但其实是一种分类技术
  • 与线性回归相反,逻辑回归不假设自变量和因变量之间存在线性关系。不过假定了决策面是线性的

支持向量机

d211d283c521d51d9c2349f1034c49c956808e8b

  • 支持向量机(SVM)是一种有监督的机器学习算法,既能解决分类问题,又能解决回归问题
  • 在SVM中,我们将数据点绘制在N维空间中,其中N代表特征数量;然后找到一个超平面来区分数据点
  • 当数据的维度高于数据点数时,这是一个很好的算法
  • 由于需要处理高维空间,这个算法计算代价高昂

K-means聚类

e0028d496b1bbe85ffd3ec6a993f9183b994a277

  • 尝试把数据分为围绕K个质心的K个组
  • 有点类似于“物以类聚,人以群分”

K-means聚类算法的实现非常简单。

  • 随机挑选K个质心
  • 然后将数据点分配给距离最近的质心
  • 根据平均位置重新计算质心
  • 迭代直到质心位置不再更改

用于预测时,只要找到距离最近的质心。

决策树

56c9c2be59faa8bbd1aa7836c0df3ff8baee6b97

  • 决策树是一个树形结构的分类器
  • 决策树对一个实例或示例的分类,从树根开始直到抵达叶片节点,也就是目标价值
  • 决策树模仿了人类,所以这个模型很容易理解
  • 小树比大树好,树越大精度越低

这些就是一些关键的机器学习算法,这些算法就像刀叉一样,各有利弊,适用于不同的场景。

如果你还有更多的疑问和兴趣,可以跟作者邮件讨论。他的Twitter地址是:https://twitter.com/alt227Joydeep

本文作者:千平 
原文发布时间:2017-11-13
相关文章
|
6月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
356 6
|
1月前
|
机器学习/深度学习 存储 Kubernetes
【重磅发布】AllData数据中台核心功能:机器学习算法平台
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
AI训练师入行指南(三):机器学习算法和模型架构选择
从淘金到雕琢,将原始数据炼成智能珠宝!本文带您走进数字珠宝工坊,用算法工具打磨数据金砂。从基础的经典算法到精密的深度学习模型,结合电商、医疗、金融等场景实战,手把手教您选择合适工具,打造价值连城的智能应用。掌握AutoML改装套件与模型蒸馏术,让复杂问题迎刃而解。握紧算法刻刀,为数字世界雕刻文明!
106 6
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于机器学习的人脸识别算法matlab仿真,对比GRNN,PNN,DNN以及BP四种网络
本项目展示了人脸识别算法的运行效果(无水印),基于MATLAB2022A开发。核心程序包含详细中文注释及操作视频。理论部分介绍了广义回归神经网络(GRNN)、概率神经网络(PNN)、深度神经网络(DNN)和反向传播(BP)神经网络在人脸识别中的应用,涵盖各算法的结构特点与性能比较。
|
4月前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
792 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
3月前
|
人工智能 编解码 算法
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
|
4月前
|
机器学习/深度学习 算法 网络安全
CCS 2024:如何严格衡量机器学习算法的隐私泄露? ETH有了新发现
在2024年CCS会议上,苏黎世联邦理工学院的研究人员提出,当前对机器学习隐私保护措施的评估可能存在严重误导。研究通过LiRA攻击评估了五种经验性隐私保护措施(HAMP、RelaxLoss、SELENA、DFKD和SSL),发现现有方法忽视最脆弱数据点、使用较弱攻击且未与实际差分隐私基线比较。结果表明这些措施在更强攻击下表现不佳,而强大的差分隐私基线则提供了更好的隐私-效用权衡。
127 14
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
解锁机器学习的新维度:元学习的算法与应用探秘
元学习作为一个重要的研究领域,正逐渐在多个应用领域展现其潜力。通过理解和应用元学习的基本算法,研究者可以更好地解决在样本不足或任务快速变化的情况下的学习问题。随着研究的深入,元学习有望在人工智能的未来发展中发挥更大的作用。
|
5月前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
176 2
|
6月前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
132 1

热门文章

最新文章