ClickHouse:抓住你的每一个目标用户,人群圈选业务的大杀器

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
简介: 随着数据时代的发展,各行各业数据平台的体量越来越大,用户个性化运营的诉求也越来越突出,用户标签系统,做为个性化千人千面运营的基础服务,应运而生。如今,几乎所有行业(如互联网、游戏、教育等)都有实时精准营销的需求。针对复杂条件过滤的场景,ClickHouse对多条件筛选流程做出优化,扫描的数据量更小,性能也较ES而言更高效。

什么是人群圈选

随着数据时代的发展,各行各业数据平台的体量越来越大,用户个性化运营的诉求也越来越突出,用户标签系统,做为个性化千人千面运营的基础服务,应运而生。如今,几乎所有行业(如互联网、游戏、教育等)都有实时精准营销的需求。通过系统生成用户画像,在营销时通过条件组合筛选用户,快速提取目标群体,例如:
• 电商行业中,商家在运营活动前,需要根据活动的目标群体的特征,圈选出一批目标用户进行广告推送或进行活动条件的判断。
• 游戏行业中,商家需要根据玩家的某些特征进行圈选,针对性地发放大礼包,提高玩家活跃度。
• 教育行业中,需要根据学生不同的特征,推送有针对性的习题,帮助学生查缺补漏。
• 搜索、门户、视频网站等业务中,根据用户的关注热点,推送不同的内容。
以电商平台中一个典型的目标群体圈选场景为例,如服装行业对其潜在客户信息采集,打标,清洗后如下表:

1609741651655-403683ff-abcc-4fca-a7f7-d24b3f8aed21.png(以上表结构中,第一列为用户身份的唯一标识,往往作为主键,其他列均为标签列。)
如公司想推出一款高端男性运动产品,则可能的圈选条件为:
1.男性,推出产品的受众群体为男性。
2.运动爱好者,运动爱好者更有可能消费运动类产品。
3.一线城市,一线城市用户相比于二三线城市用户,可能更倾向于消费高端产品。
4....
从上述表结构(人群圈选典型表结构,且大都如此,第一列为用户id,其余皆为标签列)和查询条件可以看出,人群圈选业务都面临一些共同的痛点:
• 用户标签多、标签丰富,标签列可达成百甚至上千列。
• 数据量庞大,用户数多,从而所需运算量也极大。
• 圈选条件组合多样化,没有固定索引可以优化,存储空间占用极大。
• 性能要求高,圈选结果要求及时响应,过长的延时会造成营销人群的不准确。
• 数据更新时效要求高,用户画像要求近实时的更新,过期的人群信息也将直接影响圈选的精准性。
针对以上痛点,本文将从原理层面深度分析,多角度对比讲解如何使用ClickHouse搭建人群圈选系统,为何选择ClickHouse,以及选用ClickHouse搭建人群圈选系统的优势。

为什么选择ClickHouse

本文以开ElasticSearch(ES)为例,仅针对人群圈选场景与ClickHouse做对比。开源版ES是一款高效的搜索分析引擎,利用其优秀的索引技术,可以完成各种复杂的条件组合和数据聚合运算。ClickHouse是最近比较火的一款开源列式存储分析型数据库,它最核心的特点就是极致存储压缩率和查询性能,尤其擅长单个大宽表的查询场景。因此细比两者,相较与ClickHouse,ES虽具备人群圈选业务所需的必要能力,但仍有以下3方面不足:

成本方面:

开源ES的底层存储使用lucene,主要包含行存储(storefiled),列存储(docvalues)和倒排索引(invertindex)。行存中_source字段用于控制doc原始数据的存储。在写入数据时,ES把doc原始数据的整个json结构体当做一个string,存储为_source字段,因此_source字段对存储占用量大且关闭_source将不支持update操作。同时,索引也是ES不可缺少的一部分,ES默认全列索引,虽可手动设置对特定的列取消索引,但取消索引的列将不可查询。在人群圈选场景下,选取标签过滤条件是任意的,多样的,不断变化的。对任意一条标签列不做索引都是不现实的,因此针对成百上千列的大宽表,全列索引必然使得存储成本翻倍。

ClickHouse是一款彻底的列式存储数据库,且ClickHouse的查询不依赖索引,使用过程中也不强制构建索引,因此不需要保留额外的索引文件。同时ClickHouse存储数据的副本数量灵活可配,可将使用成本降至最低。

数据更新与治理方面:

索引为ES带来了高效的查询性能,但是索引的构造过程是复杂的,耗时的。每一次索引的构建都需对全列数据进行扫描,排序来生成索引文件。而在人群圈选业务中,人群信息必然是不断增长的。标签的不断更新将会使得ES不得不频繁的重构索引,这将对ES的性能造成巨大的开销 。

ClickHouse的查询不依赖索引,使用过程中也不强制构建索引。因此对于新增数据,ClickHouse不涉及索引的更新与维护。

易用性方面:

开源ES缺少完备的sql支持,查询请求的json格式复杂。同时ES对多条件过滤聚合的执行策略缺少优化,还以文章开头的典型场景为例,圈出一款高端男性运动产品的受众人群。可得如下sql:“SELECT user_id FROM whatever_table WHERE city_level = '一线城市' AND gender = '男性' AND is_like_sports = '是';”
针对以上sql,ES的执行会对3个标签分别做3次索引扫描,之后再将3次扫描的结果做merge,流程如下图所示
1609741694581-1f38a290-0708-4615-83ee-94aa17e0ec91.png
而ClickHouse的执行则更优雅一些。ClickHouse采用标准sql,语法简单且功能强大。在执行where语句时,会自动优化形成prewhere分层执行,因此二次扫描将基于一次扫描的结果进行,执行流程如下图所示:
1609741706967-463ec8c6-0f24-4619-9c11-42b3b2ab5dad.png
显而易见,针对复杂条件过滤的场景,ClickHouse对多条件筛选流程做出优化,扫描的数据量更小,性能也较ES而言更高效。

如何基于ClickHouse搭建人群圈选系统:

对比选型完成后,接下来讲解如何基于ClickHouse搭建人群圈选系统,回顾文章开头的业务描述和上一部分的典型sql(“SELECT user_id FROM whatever_table WHERE city_level = '一线城市' AND gender = '男性' AND is_like_sports = '是';”),再次总结人群圈选业务对数据库能力的要求如下:
1.具备高效的批量数据导入性能。
2.具备处理频繁,实时update的能力。
3.具备加列/减列的DDL能力。
4.可以指定任意列为过滤条件的高效查询能力。
面对以上需求,ClickHouse如何使用才能在人群圈选场景下物尽其用,扬长避短?

insert代替update

首先要解决的是ClickHouse的异步update机制。ClickHouse对update的执行是低效的,ClickHouse内核中的MergeTree存储一旦生成一个Data Part,这个Data Part就不可再更改了。所以从MergeTree存储内核层面,ClickHouse就不擅长做数据更新删除操作。ClickHouse的语法把Update操作也加入到了Alter Table的范畴中,它并不支持裸的Update操作。
ALTER TABLE [db.]table UPDATE column1 = expr1 [, ...] WHERE filter_expr;

当用户执行一个如上的Update操作获得返回时,ClickHouse内核其实只做了两件事情:
1.检查Update操作是否合法;
2.保存Update命令到存储文件中,唤醒一个异步处理merge和mutation的工作线程;异步线程的工作流程极其复杂,总结其精髓描述如下:先查找到需要update的数据所在datapart,之后对整个datapart做扫描,更新需要变更的数据,然后再将数据重新落盘生成新的datapart,最后用新的datapart做替代并remove掉过期的datapart。
这就是ClickHouse对update指令的执行过程,可以看出,频繁的update指令对于ClickHouse来说将是灾难性的。
因此,我们使用insert语句代替update语句。当需要对某一指定user更新标签时,就重新插入一条该user的数据,
如对表中07号用户进行数据更新:
1609164047787-835cfdd2-7666-4abb-95b7-34a02455433c.png
最终,每个user可能都存在多条记录。针对人群圈选场景,同一user错乱冗余的信息显然对查询结果产生误导,无法满足精准圈选的需求。接下来讲解如何使用ClickHouse进行主键去重,即同一user,让后insert进来的数据覆盖掉已有的数据,实现update的效果。

选用AggregatingMergeTree表引擎

MergeTree是ClickHouse中最重要,最核心的存储内核,MergeTree思想上与LSM-Tree相似,其实现原理复杂,不在此展开,因为一篇文章也难以讲解清楚。本篇围绕人群圈选场景,着重从功能层面描述如何在人群圈选场景下使用MergeTree的变种AggregatingMergeTree以及使用AggregatingMergeTree可实现的数据聚合效果。AggregatingMergeTree继承自 MergeTree,存储上和基础的MergeTree其实没有任何差异,而是在数据Merge的过程中加入了“额外的合并逻辑”, AggregatingMergeTree 会将相同主键的所有行(在一个数据片段内)替换为单个存储一系列聚合函数状态的行。以文章开头部分的表结构为例,使用AggregatingMergeTree表引擎的建表语句如下:

CREATE TABLE IF NOT EXISTS whatever_table ON CLUSTER default
(
    user_id UInt64,
    city_level SimpleAggregateFunction(anyLast, Nullable(Enum('一线城市' = 0, '二线城市' = 1, '三线城市' = 2, '四线城市' = 3))),
    gender SimpleAggregateFunction(anyLast, Nullable(Enum('女' = 0, '男' = 1))),
    interest_sports SimpleAggregateFunction(anyLast, Nullable(Enum('否' = 0, '是' = 1))),
    reg_date SimpleAggregateFunction(anyLast, Datetime),
    comment_like_cnt SimpleAggregateFunction(anyLast, Nullable(UInt32)),
    last30d_share_cnt SimpleAggregateFunction(anyLast, Nullable(UInt32)),
    user_like_consume_trend_type SimpleAggregateFunction(anyLast, Nullable(String)),
    province SimpleAggregateFunction(anyLast, Nullable(String)),
    last_access_version SimpleAggregateFunction(anyLast, Nullable(String)),
    others SimpleAggregateFunction(anyLast,Array(String))
)ENGINE = AggregatingMergeTree() partition by toYYYYMMDD(reg_date) ORDER BY user_id;

就以上建标语句展开分析,AggregatingMergeTree会将除主键(user)外的其余列,配合anyLast函数,替换每行数据为一种预聚合状态。其中anyLast聚合函数声明聚合策略为保留最后一次的更新数据。

数据一致性保证

上一部分讲述了如何针对人群圈选场景选择表引擎和聚合函数,但是AggregatingMergeTree并不能保证任何时候的查询都是聚合过后的结果,并且也没有提供标志位用于查询数据的聚合状态与进度。因此,为了确保数据在查询前处于已聚合的状态,还需手动下发optimize指令强制聚合过程的执行。同时方便起见,可自行配置周期性optimize指令的下发。例如每10分钟执行一次optimize指令。optimize的执行周期可在业务的实时性需求与计算资源之间做权衡。如数据量过大,optimize生效慢,可按partition级别并行下发做优化。optimize生效后即可实现去重逻辑。
1609165450957-7cce1d8d-e519-4173-ab94-d249d768671f.png

Demo:

import java.sql.*;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.concurrent.TimeoutException;

public class Main {
    private static final String DATE_FORMAT = "yyyy-MM-dd HH:mm:ss";
    private static final SimpleDateFormat SIMPLE_DATE_FORMAT = new SimpleDateFormat(DATE_FORMAT);

    public static void main(String[] args) throws ClassNotFoundException, SQLException, InterruptedException, ParseException {
        String url = "your url";
        String username = "your username";
        String password = "your password";

        Class.forName("ru.yandex.clickhouse.ClickHouseDriver");
        String connectionStr = "jdbc:clickhouse://" + url + ":8123";

        try {
            Connection connection = DriverManager.getConnection(connectionStr, username, password);
            Statement stmt = connection.createStatement();

            // 创建local表
            String createLocalTableDDL = "CREATE TABLE IF NOT EXISTS whatever_table ON CLUSTER default " +
                    "(user_id UInt64, " +
                    "city_level SimpleAggregateFunction(anyLast, Nullable(Enum('一线城市' = 0, '二线城市' = 1, '三线城市' = 2, '四线城市' = 3))), " +
                    "gender SimpleAggregateFunction(anyLast, Nullable(Enum('女' = 0, '男' = 1)))," +
                    "interest_sports SimpleAggregateFunction(anyLast, Nullable(Enum('否' = 0, '是' = 1)))," +
                    "reg_date SimpleAggregateFunction(anyLast, Datetime)) " +
                    "comment_like_cnt SimpleAggregateFunction(anyLast, Nullable(UInt32)),\n" +
                    "last30d_share_cnt SimpleAggregateFunction(anyLast, Nullable(UInt32)),\n" +
                    "user_like_consume_trend_type SimpleAggregateFunction(anyLast, Nullable(String)),\n" +
                    "province SimpleAggregateFunction(anyLast, Nullable(String)),\n" +
                    "last_access_version SimpleAggregateFunction(anyLast, Nullable(String)),\n" +
                    "others SimpleAggregateFunction(anyLast, Array(String)),\n" +
                    "ENGINE = AggregatingMergeTree() PARTITION by toYYYYMM(reg_date) ORDER BY user_id;";

            stmt.execute(createLocalTableDDL);
            System.out.println("create local table done.");

            // 创建distributed表
            String createDistributedTableDDL = "CREATE TABLE IF NOT EXISTS whatever_table_dist ON cluster default " +
                    "AS default.whatever_table " +
                    "ENGINE = Distributed(default, default, whatever_table, intHash64(user_id));";
            stmt.execute(createDistributedTableDDL);
            System.out.println("create distributed table done");

            // 插入mock数据
            String insertSQL = "INSERT INTO whatever_table(\n" +
                    "\tuser_id,\n" +
                    "\tcity_level,\n" +
                    "\tgender,\n" +
                    "\tinterest_sports,\n" +
                    "\treg_date,\n" +
                    "\tcomment_like_cnt,\n" +
                    "\tlast30d_share_cnt,\n" +
                    "\tuser_like_consume_trend_type,\n" +
                    "\tprovince,\n" +
                    "\tlast_access_version,\n" +
                    "\tothers\n" +
                    "\t)SELECT\n" +
                    " number as user_id,\n" +
                    " toUInt32(rand(11)%4) as city_level,\n" +
                    " toUInt32(rand(30)%2) as gender,\n" +
                    " toUInt32(rand(28)%2) as interest_sports,\n" +
                    " (toDateTime('2020-01-01 00:00:00') + rand(1)%(3600*24*30*4)) as reg_date,\n" +
                    " toUInt32(rand(15)%10) as comment_like_cnt,\n" +
                    " toUInt32(rand(16)%10) as last30d_share_cnt,\n" +
                    "randomPrintableASCII(64) as user_like_consume_trend_type,\n" +
                    "randomPrintableASCII(64) as province,\n" +
                    "randomPrintableASCII(64) as last_access_version,\n" +
                    "[randomPrintableASCII(64)] as others\n" +
                    " FROM numbers(100000);\n";
            stmt.execute(insertSQL);
            System.out.println("Mock data and insert done.");

            System.out.println("Select count(user_id)...");
            ResultSet rs = stmt.executeQuery("select count(user_id) from whatever_table_dist");
            while (rs.next()) {
                int count = rs.getInt(1);
                System.out.println("user_id count: " + count);
            }

            // 数据合并
            String optimizeSQL = "OPTIMIZE table whatever_table final;";
            // 如数据合并时间过长,可在partition级别并行执行
            String optimizeByPartitionSQL = "OPTIMIZE table whatever_table PARTITION 202001 final;";
            try {
                stmt.execute(optimizeByPartitionSQL);
            }catch (SQLTimeoutException e){
                // 查看merge进展
                // String checkMergeSQL = "select * from system.merges where database = 'default' and table = 'whatever_table';";
                Thread.sleep(60*1000);
            }

            // 人群圈选(city_level='一线城市',gender='男性',interest_sports='是', reg_date<='2020-01-31 23:59:59')
            String selectSQL = "SELECT user_id from whatever_table_dist where city_level=0 and gender=1 and interest_sports=1 and reg_date <= NOW();";
            rs = stmt.executeQuery(selectSQL);
            while (rs.next()) {
                int user_id = rs.getInt(1);
                System.out.println("Got suitable user: " + user_id);
            }
        } catch (Exception e) {
            e.printStackTrace();
        }

    }
}

写在最后

阿里云已经推出了ClickHouse的云托管产品,产品首页地址:云数据库ClickHouse,欢迎大家试用,对Clickhouse感兴趣的也可加入Clickhouse技术交流群。
1609728039574-90a0eead-d658-4e54-be60-15fdb3b15f8e.png

目录
相关文章
|
搜索推荐 BI OLAP
Clickhouse在画像场景如何快速计算人群的年龄分布
在画像场景场景中,对不同年龄段的人群进行计数是一个常见的操作,如何使用Clickhouse快速的计算出人群的年龄分布情况呢?
1627 1
Clickhouse在画像场景如何快速计算人群的年龄分布
|
搜索推荐 OLAP
Clickhouse在画像场景如何对人群分布情况进行N等分
Clickhouse是一个性能强悍的OLAP系统,经常被用于用户画像等场景。 在画像场景中,经常需要按照某一指标对人群进行N等分,然后对每个人根据指标所处的范围打上对应标签。 本文主要介绍如何通过Clickhouse对人群分布情况进行N等分。
460 0
Clickhouse在画像场景如何对人群分布情况进行N等分
|
3月前
|
存储 关系型数据库 MySQL
一个项目用5款数据库?MySQL、PostgreSQL、ClickHouse、MongoDB区别,适用场景
一个项目用5款数据库?MySQL、PostgreSQL、ClickHouse、MongoDB——特点、性能、扩展性、安全性、适用场景比较
|
13天前
|
SQL Unix OLAP
ClickHouse安装教程:开启你的列式数据库之旅
ClickHouse 是一个高性能的列式数据库管理系统,适用于在线分析处理(OLAP)。本文介绍了 ClickHouse 的基本使用步骤,包括下载二进制文件、安装应用、启动服务器和客户端、创建表、插入数据以及查询新表。还提到了图形客户端 DBeaver 的使用,使操作更加直观。通过这些步骤,用户可以快速上手并利用 ClickHouse 的强大性能进行数据分析。
55 4
|
3月前
|
存储 分布式计算 数据库
阿里云国际版设置数据库云分析工作负载的 ClickHouse 版
阿里云国际版设置数据库云分析工作负载的 ClickHouse 版
|
4月前
|
存储 SQL 缓存
数据库测试|Elasticsearch和ClickHouse的对决
由于目前市场上主流的数据库有许多,这次我们选择其中一个比较典型的Elasticsearch来和ClickHouse做一次实战测试,让大家更直观地看到真实的比对数据,从而对这两个数据库有更深入的了解,也就能理解为什么我们会选择ClickHouse。
数据库测试|Elasticsearch和ClickHouse的对决
|
3月前
|
存储 关系型数据库 MySQL
四种数据库对比MySQL、PostgreSQL、ClickHouse、MongoDB——特点、性能、扩展性、安全性、适用场景
四种数据库对比 MySQL、PostgreSQL、ClickHouse、MongoDB——特点、性能、扩展性、安全性、适用场景
|
7月前
|
DataWorks API 调度
DataWorks产品使用合集之在调度配置配置了节点的上游节点输出,没办法自动生成这个flow的依赖,该怎么操作
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
7月前
|
DataWorks 安全 关系型数据库
DataWorks产品使用合集之建了 polar 与clickhouse的数据源。为什么数据库这里总是mysql呢
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
6月前
|
存储 大数据 关系型数据库
从 ClickHouse 到阿里云数据库 SelectDB 内核 Apache Doris:快成物流的数智化货运应用实践
目前已经部署在 2 套生产集群,存储数据总量达百亿规模,覆盖实时数仓、BI 多维分析、用户画像、货运轨迹信息系统等业务场景。