揭秘双11丝滑般剁手之路背后的网络监控技术

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 本篇将重点介绍Hologres在阿里巴巴网络监控部门成功替换Druid的最佳实践,并助力双11实时网络监控大盘毫秒级响应。

概要:刚刚结束的2020天猫双11中,MaxCompute交互式分析(Hologres)+实时计算Flink搭建的云原生实时数仓首次在核心数据场景落地,为大数据平台创下一项新纪录。借此之际,我们将陆续推出云原生实时数仓双11实战系列内容,本篇将重点介绍Hologres在阿里巴巴网络监控部门成功替换Druid的最佳实践,并助力双11实时网络监控大盘毫秒级响应。

3...
2...
1...
00:00:00 。购物车,结算,提交订单,付款
00:01:00...。滴,您的支付宝消费xxx万元。
亿万人同时参与的千亿级项目,破记录的峰值58万笔/秒,剁手党们在整个交易过程中如丝般顺滑,好像参加了一个假的双11,而这一切的背后都离不开阿里巴巴网络能力的强大支持。随着技术的发展,尤其是近年来云和电商业务的愈发兴盛,基础网络也变得越来越庞大和复杂,如何保障这张膨胀网络的稳定性,提供云上用户畅通无阻的购物体验,对网络系统建设者和运维者说更是极大的考验。
理论上来说,故障不可避免,但是如果能够做到快速发现,定位,修复甚至预防故障,缩短故障时长,即可让用户轻微或无感是稳定性追求的终极目标。2015年的微软提出了pingmesh,成为业界事实的解决方案,但是由于天生的某些缺陷性,导致故障发现时间过长。阿里巴巴网络研发事业部从2017年就开始研发站在世界前沿的探测系统AliPing,AliPing实时系统的出现将阿里故障发现带入了秒级响应,数据采集到处理到大盘呈现最快时间延迟在数秒之间,告警+故障定位分钟级,7*24全天候监控着整个阿里的网络状况。
AliPling的核心架构图如下:
1.png

在整个系统中,监控大盘作为故障发现的核心元素,承担着实时呈现网络状况的重任,每一条曲线的起起伏伏,就有可能代表用户的业务在受损, 如何快速实时展示网络状态,并预警/发现网络故障,帮助用户迅速止血,这对于监控团队的监控大盘也是重大的考验。对于监控人员使用的监控大盘来说,困难有多个:
1)数据时效性要求高:需要实时的将处理完的结构化数据(告警,监控)7*24小时的呈现在使用者(GOC, 各个或者监控人员面前,以便及时地发现处理全阿里+蚂蚁的网络故障。
2)数据源复杂:网络数据源众多,业务场景众多,有一分钟数百G的流量监控数据,也有一分钟几十K的IDC网络数据,如何将这些不同种类,不同数据量的业务数据,纳入监控体系发现异常,对整体端到端监控大盘来说也是一种考验。
3)数据指标维度多:对于监控人员来说,需要监控的数据指标维度特别多,可以看作是一个复杂的OLAP查询系统,如何根据自身业务场景从大盘中实时查询所需的业务数据,这对于处理后端数据的OLAP框架也是一个重大挑战。

技术选型

对于监控大盘来说,用户的组合查询条件具有不可预知性,其结构化数据没有办法提前算好,只通过OLAP(联机分析处理)技术,实时对基础数据分析组合,并将结果呈现给用户。Aliping大盘实际就是OLAP技术体现,将不同维度的故障数据(机房、区域、DSW、ASW、PSW、部门、应用等等)通过大盘形式展现在用户面前。

2017年在AliPing系统实施的时候,我们对比了多项OLAP数据库, 其中选择比较有代表性的进行了对比:
1)HIVE
底层基于HDFS存储,将SQL语句分解为MapReduce任务进行查询。其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。但是由于底层是HDFS分布式文件系统的限制性,不能进行常见的CUD(对表记录操作)操作,同时Hive需要从已有的数据库或日志进行同步最终入到HDFS文件系统中,当前要做到增量实时同步都相当困难。最重要的是:查询速度慢,无法满足监控大盘秒级相应需求。
2)Kylin
传统OLAP根据数据存储方式的不同分为ROLAP(relational olap)以及MOLAP(multi-dimension olap)。ROLAP 以关系模型的方式存储用作多为分析用的数据,优点在于存储体积小,查询方式灵活,然而缺点也显而易见,每次查询都需要对数据进行聚合计算,为了改善短板,ROLAP使用了列存、并行查询、查询优化、位图索引等技术。Kylin中数据立方的思想就是以空间换时间,通过定义一系列的纬度,对每个纬度的组合进行预先计算并存储。有N个纬度,就会有2的N次种组合。所以最好控制好纬度的数量,因为存储量会随着纬度的增加爆炸式的增长,产生灾难性后果。这个对于庞大的网络数据和不可确定性维度组合,是不可以接受的。

3)ClickHouse
这个是由俄罗斯yandex公司开发的,专门为在线数据分析而设计。根据官方提供的文档来看,ClickHouse 日处理记录数"十亿级"(没测过)。其机制采用列式存储,数据压缩,支持分片,支持索引,并且会将一个计算任务拆分分布在不同分片上并行执行,计算完成后会将结果汇总,支持SQL和联表查询但是支持不够好,支持实时更新,自动多副本同步。总体来说,ClickHouse还算不错,但是由于不够成熟,官方支持度不够,bug也多多,最重要的是集团内也没看到人用,只能放弃

4)Druid
是一种能对历史和实时数据提供亚秒级别的查询的数据存储系统。Druid 支持低延时的数据摄取,灵活的数据探索分析,高性能的数据聚合,简便的水平扩展。适用于数据量大,可扩展能力要求高的分析型查询系统。其机制将热点和实时数据存储在实时节点(Realtime Node)内存中,将历史数据存储在历史节点(history node)的硬盘中,实时+伪实时的结构,保证查询基本都在毫秒级。高速摄入,快速查询正是满足了我们的需求,同时还有通用计算引擎团队的有力支持,在早期我们选择了druid作为了我们监控大盘的OLAP支持系统。

新OLAP网络监控系统

随着业务的复杂化,业务进一步增多,Druid使用过程中也暴露出一系列问题:
1)数据量摄入的瓶颈, 集团上云,流量的引入,使我们数据量激增,数据写入出现了数次大故障
2)由于业务复杂多变,我们需要增加维度数据,Druid增加相对来说过程比较复杂
3)Druid的查询方式不友好,有一套自己的查询语言,对于SQL支持太差,浪费大量时间学习
4)不支持高并发,对于大促来说简直是灾难。有两年双十一,我们只能上线踢用户保证监控大盘可用。

随着暴露出的问题越来越多,我们也在寻找一款既能替代Druid解决当前问题,又能满足实时OLAP多维分析场景需求的产品。
也是在集团内其他部门沉淀的最佳实践中知道Hologres,并且了解到Hologres支持行存模式下的高并发点查和列存模式下的实时OLAP多维分析,觉得这一点很贴合我们网络监控系统的要求,于是就抱着试试的心态先去测试体验Hologres。通过全链路的测试和大量的场景数据验证,能满足我们场景需求,于是就决定上线Hologres至正式生产中。

改造后的新OLAP监控系统如下图所示,整体的数据流程大致如下:

  • Kafka实时采集网络相关的监控指标数据,并写入Flink中轻度汇总加工
  • Flink将初步加工完成的基础粒度的实时数据实时写入Hologres中,由Hologres提供统一的存储
  • Hologres直接实时对接监控大屏,大屏实时展示多种监控指标的变化情况,不符合预期的数据实时报警,相应的业务人员立即排查问题并解决。
    2.png

业务价值

今年也是Hologres第一年参与AIS网络故障监控的双11作战,作为新秀交出了令我们比较满意的答卷。整体来说对于业务的价值主要表现如下:

1)TB级数据毫秒级响应
对于实时监控来说,时间就是生命线,越快发现故障就能越快止血,如何根据用户输入的复杂组合条件,在TB级数据中,仅仅以秒级甚至是毫秒级的响应筛选出符合要求的数据(OLAP),这对很多系统来说都是很大的挑战,而实战证明,合理的利用Hologres索引功能,并通过资源的合理分配等,在OLAP实时性上完美的满足了监控业务的需要。

2)支持高并发
双11的监控大屏往往需要查询查询历史数据,并根据历史数据做报警预测,以往的系统最多只能支撑不到数十用户的查询(数10天数据),而Hologres能支撑数百用户的大规模并行查询并且依旧没有达到上限,在今年双11的0点时,面对数百倍的平时数据量冲击,监控曲线依旧平滑如旧,毫无滞涩之感

3)写入性能高
对于之前数十万/秒,数百万/秒的写入能力,Druid的表现不是很好容易出现涌塞现象,而Hologres可以轻松做到,这也就轻松解决了我们的实时写入瓶颈问题。

4)学习成本低
Hologres兼容Postgres,全SQL支持,非常方便新用户上手,无需再花费时间和精力去研究语法。同时Hologres对于BI工具的兼容性很好,无需做改造就能对接监控大屏,节约大量时间。

对每一个天猫双11剁手人来说,每一次的丝滑般购物体验都离不开阿里网络能力的支撑,而监控大盘就是阿里网络状况的眼睛。Hologres作为大盘的核心环节,给大盘持续赋能。但是,作为一个新生儿,HOLO仍然有一些不太成熟的地方,在透明升级、稳定性等环节上依存在提升空间。我们也愿意同Hologres一起成长,期待明年双11 Hologres更优秀的表现。

作者简介:唐傥,隶属网络研发事业部网络,现从事网络稳定性开发研究工作,前北邮研究生导师,拥有数个网络和算法相关专利。

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
相关文章
|
23天前
|
人工智能 安全 算法
利用AI技术提升网络安全防御能力
【10月更文挑战第42天】随着人工智能技术的不断发展,其在网络安全领域的应用也日益广泛。本文将探讨如何利用AI技术提升网络安全防御能力,包括异常行为检测、恶意软件识别以及网络攻击预测等方面。通过实际案例和代码示例,我们将展示AI技术在网络安全防御中的潜力和优势。
|
25天前
|
存储 安全 网络安全
云计算与网络安全:技术融合的双刃剑
【10月更文挑战第40天】本文将深入探讨云计算与网络安全之间的关系,揭示它们如何相互依赖又互相挑战。我们将从云计算的基本概念出发,逐步引入网络安全的重要性,并分析云服务在提供便利的同时可能带来的安全隐患。文章还将讨论信息安全的关键领域,如加密技术和身份验证机制,以及如何在云计算环境中加强这些安全措施。通过本文,读者将获得对云计算和网络安全复杂关系的深刻理解,并认识到在享受技术便利的同时,维护网络安全的重要性。
|
10天前
|
存储 安全 网络安全
云计算与网络安全:技术融合的双刃剑
在数字化浪潮中,云计算如同一股不可阻挡的力量,推动着企业和个人用户步入一个高效、便捷的新时代。然而,随之而来的网络安全问题也如影随形,成为制约云计算发展的阿喀琉斯之踵。本文将探讨云计算服务中的网络安全挑战,揭示信息保护的重要性,并提供实用的安全策略,旨在为读者呈现一场技术与安全的较量,同时指出如何在享受云服务带来的便利的同时,确保数据的安全和隐私。
20 6
|
9天前
|
存储 人工智能 安全
云计算与网络安全:技术融合与挑战
在数字化时代的浪潮中,云计算和网络安全已成为推动社会进步的两大关键技术。本文将探讨云计算服务的发展,网络安全的重要性,以及信息安全技术的演进。我们将通过实例分析,揭示云服务如何增强数据保护,网络安全措施如何应对新兴威胁,以及信息安全技术的创新如何为企业带来竞争优势。文章旨在为读者提供对云计算和网络安全领域的深入理解,并展示它们如何共同塑造我们的未来。
|
14天前
|
供应链 安全 物联网安全
NIST(美国国家标准与技术研究院)在网络安全领域进行了多项创新
NIST(美国国家标准与技术研究院)在网络安全领域进行了多项创新
35 10
|
8天前
|
监控 安全 网络安全
云计算与网络安全:技术挑战与解决方案
随着云计算技术的飞速发展,其在各行各业的应用越来越广泛。然而,随之而来的网络安全问题也日益凸显。本文将从云服务、网络安全和信息安全等技术领域出发,探讨云计算面临的安全挑战及相应的解决方案。通过实例分析和代码示例,旨在帮助读者更好地理解云计算与网络安全的关系,提高网络安全防护意识。
|
10天前
|
存储 监控 安全
云计算与网络安全:云服务、网络安全、信息安全等技术领域的融合与挑战
本文将探讨云计算与网络安全之间的关系,以及它们在云服务、网络安全和信息安全等技术领域中的融合与挑战。我们将分析云计算的优势和风险,以及如何通过网络安全措施来保护数据和应用程序。我们还将讨论如何确保云服务的可用性和可靠性,以及如何处理网络攻击和数据泄露等问题。最后,我们将提供一些关于如何在云计算环境中实现网络安全的建议和最佳实践。
|
12天前
|
存储 安全 网络安全
云计算与网络安全:云服务、网络安全、信息安全等技术领域的融合与挑战
随着云计算技术的飞速发展,越来越多的企业和个人开始使用云服务。然而,云计算的广泛应用也带来了一系列网络安全问题。本文将从云服务、网络安全、信息安全等方面探讨云计算与网络安全的关系,分析当前面临的挑战,并提出相应的解决方案。
39 3
|
18天前
|
存储 安全 网络安全
云计算与网络安全:技术融合与安全挑战
随着云计算技术的飞速发展,其在各行各业的应用日益广泛。然而,随之而来的网络安全问题也日益凸显,成为制约云计算发展的重要因素。本文将从云服务、网络安全、信息安全等方面探讨云计算与网络安全的关系,分析云计算环境下的网络安全挑战,并提出相应的解决方案。
|
17天前
|
存储 安全 网络安全
云计算与网络安全:技术融合的双刃剑
本文深入探讨了云计算和网络安全之间的复杂关系。通过分析云服务的基本架构,我们揭示了它们在提供便利的同时,如何引入新的安全挑战。文章不仅讨论了这些挑战,还提供了应对策略,旨在帮助读者理解并加强他们的网络安全防护。

热门文章

最新文章