云时代的智能运维平台,助力企业创新迭代

本文涉及的产品
对象存储 OSS,20GB 3个月
云备份 Cloud Backup,100GB 3个月
文件存储 NAS,50GB 3个月
简介: 智能的运维平台,帮助企业业务平稳、智能、高效地运行。

每一起严重事故背后,必然有29次轻微事故和300起未遂先兆以及1000起事故隐患。—— 海恩法则(Heinrich‘s Law)

随着云计算时代的到来,大量企业将自己的业务逐步迁移上云。云计算的弹性,让IT资源购买、扩容等更简单。许多企业,已经不要花费巨大的人工时间,投入在IDC、服务器、网卡等物理资源的购买、扩容、升级等等。
但随着信息时代的发展,业务在线化,业务系统服务客户规模更大,系统的稳定变得更加重要。一旦出现故障,运维人员无法提前预警、以及无法最快时间内寻找出问题,极易影响到业务,造成巨大损失。
面对庞大的业务系统、多样的服务模块、海量的日志与监控信息、极致的业务需求等,如何构建企业的快速、自动化、智能化、全周期的智能运维与预警系统,已经是企业竞争力的一部分。
因此,越来越多的企业开始搭建属于自己的智能运维平台,力图减轻运维人员的负担,以及更智能的故障预警、更快的响应。尤其是在这个业务上云的时代,企业运维平台的价值密集一直在升级,许多企业已经从基础的资源购买维护中,升级到对业务价值的提升上。

4.png

由于泛日志类数据的利用与分析,正在成为企业竞争力的一部分。研究报告表明,泛日志类机器数据和规模快速增长,企业需要通过更加智能的运维平台,来为业务提供参考。加之业务系统的时间价值密度逐渐加大,系统服务的客户指数级增长,业务系统的复杂度和集群规模变得越大,因此一个稳定、高效且实惠的智能运维平台逐渐成为一个企业安身立命的根本。
但是在搭建智能运维平台时,我们又经常会遇到以下几个挑战:
1、海量日志,如何快速分析告警:比如千亿、万亿条日志,如何实时查询分析?如何确保实时稳定写入?
2、系统复杂,数十个维度的数据,如何更高效地多维度分析?
3、如何抽丝剥茧,从中找的最重要的信息?比如,Error日志有几万条,如何找到重要信息?
4、海量日志长周期保存和处理流转:从实时数据到历史数据,如何满足不同的分析模式和存储要求?

5.png

阿里云在这些年服务阿里巴巴经济体、以及阿里云客户时,也遇到过许多这类的问题。阿里云通过不断打磨,推出了阿里云日志服务SLS,助力客户构建智能运维平台。
在9月18号云栖大会上,阿里云智能高级产品专家铧剑为大家带来了题为《云时代的智能运维平台日志服务,助力企业创新迭代》的分享,在分享中详细地介绍了阿里云日志服务SLS,是如何为用户提供一站式的日志采集、告警、存储、分析以及可视化的能力,帮助企业的技术运维人员在云时代,能够基于SLS构建自己的智能运维平台,快速分析系统状态、洞察业务,助力企业的快速迭代和业务创新。

阿里云日志服务SLS,具备以下几个优势:
1、 秒级实时分析和告警:千亿条日志中,秒级返回10亿条记录
2、 多维度数据联合分析能力:并提供高维查询、实时分析、定时任务、可视化能力
3、 更深入细节洞察:从秒级细节、异常点位AI检测、数据聚类来助力抽丝剥茧,发现重要信息

6.png

这些能力,帮助客户对Logging、Metric、Tracing数据进行统一采集存储分析,满足业务监控、日志分析、安全审计等要求,轻松解决如何快速、多维、深入细节分析的挑战。
同时,SLS提供全周期的数据流转能力,近期新发布的数据加工、数据投递,可支持不同的分析模式、周期要求。利用数据加工,企业可以根据不同的分析要求,对数据进行规整、ETL。而利用数据投递,企业可以满足不同时间周期的数据处理方式、保存方式的数据流转要求。

7.png

因此在这个业务上云的时代,我们需要更智能的运维平台,帮助我们的业务平稳、智能、高效地运行。我们坚信,基于阿里云日志服务SLS搭建,企业的智能运维平台,能真正帮助到企业进行业务价值的创新迭代,助力企业客户的业务,更稳定且快速地发展。

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
相关文章
|
11天前
|
机器学习/深度学习 人工智能 运维
人工智能在云计算中的运维优化:智能化的新时代
人工智能在云计算中的运维优化:智能化的新时代
100 49
|
5天前
|
存储 分布式计算 Hadoop
【产品升级】Dataphin V4.4重磅发布:开发运维提效、指标全生命周期管理、智能元数据生成再升级
Dataphin V4.4版本引入了多项核心升级,包括级联发布、元数据采集扩展、数据源指标上架、自定义属性管理等功能,大幅提升数据处理与资产管理效率。此外,还支持Hadoop集群管理、跨Schema数据读取、实时集成目标端支持Hudi及MaxCompute delta等技术,进一步优化用户体验。
【产品升级】Dataphin V4.4重磅发布:开发运维提效、指标全生命周期管理、智能元数据生成再升级
|
2天前
|
机器学习/深度学习 数据采集 运维
机器学习在运维中的实时分析应用:新时代的智能运维
机器学习在运维中的实时分析应用:新时代的智能运维
25 12
|
12天前
|
人工智能 运维 自然语言处理
智能化运维:AI在IT运维领域的深度应用与实践####
本文探讨了人工智能(AI)技术在IT运维领域的深度融合与实践应用,通过分析AI驱动的自动化监控、故障预测与诊断、容量规划及智能决策支持等关键方面,揭示了AI如何赋能IT运维,提升效率、降低成本并增强系统稳定性。文章旨在为读者提供一个关于AI在现代IT运维中应用的全面视角,展示其实际价值与未来发展趋势。 ####
76 4
|
14天前
|
机器学习/深度学习 人工智能 运维
智能化运维:AI与大数据在IT运维中的应用探索####
本文旨在探讨人工智能(AI)与大数据分析技术如何革新传统IT运维模式,提升运维效率与服务质量。通过具体案例分析,揭示AI算法在故障预测、异常检测及自动化修复等方面的实际应用成效,同时阐述大数据如何助力实现精准运维管理,降低运营成本,提升用户体验。文章还将简要讨论实施智能化运维面临的挑战与未来发展趋势,为IT管理者提供决策参考。 ####
|
11天前
|
机器学习/深度学习 人工智能 运维
智能化运维在现代数据中心的应用与挑战####
本文深入探讨了智能化运维(AIOps)技术在现代数据中心管理中的实际应用,分析了其带来的效率提升、成本节约及潜在风险。通过具体案例,阐述了智能监控、自动化故障排查、容量规划等关键功能如何助力企业实现高效稳定的IT环境。同时,文章也指出了实施过程中面临的数据隐私、技术整合及人才短缺等挑战,并提出了相应的解决策略。 --- ####
28 1
|
15天前
|
机器学习/深度学习 数据采集 人工智能
智能化运维在企业IT管理中的应用与实践####
本文深入探讨了智能化运维(AIOps)的核心技术原理,通过对比传统运维模式,揭示了AIOps如何利用大数据、机器学习等先进技术提升故障预测准确性、优化资源分配及自动化处理流程。同时,文章详细阐述了智能化运维平台的实施步骤,包括数据收集与分析、模型训练与部署、以及持续监控与优化,旨在为企业IT部门提供一套切实可行的智能化转型路径。最后,通过几个典型应用案例,如某大型电商平台的智能告警系统和金融企业的自动化故障排查流程,直观展示了智能化运维在实际业务场景中的显著成效,强调了其在提升运维效率、降低运营成本方面的关键作用。 ####
41 4
|
2月前
|
运维 Linux Apache
,自动化运维成为现代IT基础设施的关键部分。Puppet是一款强大的自动化运维工具
【10月更文挑战第7天】随着云计算和容器化技术的发展,自动化运维成为现代IT基础设施的关键部分。Puppet是一款强大的自动化运维工具,通过定义资源状态和关系,确保系统始终处于期望配置状态。本文介绍Puppet的基本概念、安装配置及使用示例,帮助读者快速掌握Puppet,实现高效自动化运维。
63 4
|
18天前
|
机器学习/深度学习 运维 监控
智能化运维:从自动化到AIOps的演进之路####
本文深入探讨了IT运维领域如何由传统手工操作逐步迈向高度自动化,并进一步向智能化运维(AIOps)转型的过程。不同于常规摘要仅概述内容要点,本摘要将直接引入一个核心观点:随着云计算、大数据及人工智能技术的飞速发展,智能化运维已成为提升企业IT系统稳定性与效率的关键驱动力。文章详细阐述了自动化工具的应用现状、面临的挑战以及AIOps如何通过预测性分析和智能决策支持,实现运维工作的质变,引领读者思考未来运维模式的发展趋势。 ####
|
18天前
|
机器学习/深度学习 数据采集 人工智能
智能化运维:从自动化到AIOps的演进与实践####
本文探讨了智能运维(AIOps)的崛起背景,深入分析了其核心概念、关键技术、应用场景及面临的挑战,并对比了传统IT运维模式,揭示了AIOps如何引领运维管理向更高效、智能的方向迈进。通过实际案例分析,展示了AIOps在不同行业中的应用成效,为读者提供了对未来智能运维趋势的洞察与思考。 ####
43 1