JindoTable数据湖优化与查询加速

本文涉及的产品
EMR Serverless StarRocks,5000CU*H 48000GB*H
简介: 近几年,数据湖架构的概念逐渐兴起,很多企业都在尝试构建数据湖。相比较大数据平台,数据湖在数据治理方面提出了更高的要求。对于数据湖场景所提出的新需求,“传统”的大数据工具在很多方面都面临着新的挑战。JindoTable 正是专为解决数据湖管理结构化数据甚至是半结构化数据的痛点而设计的,包括数据治理功能和查询加速功能。

概述

近几年,数据湖架构的概念逐渐兴起,很多企业都在尝试构建数据湖。相比较大数据平台,数据湖在数据治理方面提出了更高的要求。对于数据湖场景所提出的新需求,“传统”的大数据工具在很多方面都面临着新的挑战。JindoTable 正是专为解决数据湖管理结构化数据甚至是半结构化数据的痛点而设计的,包括数据治理功能和查询加速功能。

数据优化

数据湖需要存储来自各种数据源的数据。对于 HDFS 集群,小文件问题让很多用户倍感烦恼。在存储计算分离的数据湖中,小文件同样会产生很多问题:过多的文件数会导致目录list时间显著变长,小文件也会影响很多计算引擎的并发度。此外,由于对象存储一般以对象为单位,小文件也会导致请求数量的上升,会明显影响元数据操作的性能,更会增加企业需要支付的费用。而如果数据文件过大,如果数据又使用了不可分割的压缩格式,后续计算的并发度会过低,导致无法充分发挥集群的计算能力。因此,即使是数据湖架构中,对数据文件进行治理和优化也是非常必要的。

基于数据湖所管理的元数据信息,JindoTable 为客户提供了一键式的优化功能,用户只要在资源较为空闲时触发优化指令,JindoTable 可以自动为用户优化数据,规整文件大小,进行适当的排序、预计算,生成适当的索引信息和统计信息,结合计算引擎的修改,可以为这些数据生成更加高效的执行计划,大幅减少用户查询的执行时间。数据优化对用户透明,优化前后不会出现读取的数据不一致的情况。这也是数据湖的数据治理所不可或缺的功能。

查询加速

JindoTable 还有一项重磅功能,就是查询加速功能。在数仓中,数据分析总是越快越好。尤其是 Ad-Hoc 场景,对查询延迟非常敏感。现在“湖仓一体”的概念也很火,对于数据湖这种普遍使用存储计算分离场景的架构,如何尽可能减少 IO 开销,对于缩短查询时间是非常关键的。

之前介绍的 JindoTable 数据优化功能,是在存储端减少额外开销,并且通过提前的计算,为运行时优化打好基础。JindoTable 的查询加速功能则是在查询执行时,通过把计算推向存储,减少计算时整体的 IO 压力,同时利用存储端空闲的计算资源提供高效的计算,缩短整体查询时间。JindoTable 的加速服务结合修改后的各种计算引擎,可以把尽可能多的算子下推到缓存端,并且利用高效的 native 计算能力过滤大量原始数据,再把数据高效地传输给计算引擎。这样,计算引擎所需处理的数据大大减少,甚至一些计算也可以直接略过,后续的计算所需的时间自然也就大为减少。
9.png

分层存储

数据湖所存储的数据量通常增长迅速。对于传统的 Hadoop 集群,如果数据量急剧增长,所需的存储资源也要相应增加,这样会导致集群规模迅速扩大,计算资源也会变得过剩。抛开集群规模增长导致的其他问题不谈,光是运营集群的成本问题就足够让人头疼。好在公有云平台提供了对象存储的服务,我们可以按存储的数据量来付费,这在节约成本的同时,用户也不用担心 HDFS 在集群资源和数据量快速增长情况下的稳定性问题。但数据量快速增长还是会等比例的增加整体开销。

阿里云的对象存储服务 OSS,为用户提供了低频存储和归档存储,对于访问不是那么频繁的数据,如果能够转为低频或归档模式来存储,可以尽量节约成本。而一部分数据如果有频繁的访问需求,放在远离计算资源的对象存储上,又会导致计算时的 IO 出现瓶颈。JindoTable 对接数据湖中各种计算引擎,以表或分区为最小单位,统计数据的访问频次。根据用户设定的规则,JindoTable 可以告诉用户哪些表或者分区的访问频次较高,让用户可以通过 JindoTable 命令,借助 JindoFS 提供的底层支持,把这些表或者分区对应的数据缓存到计算集群内,加速查询的执行。同时,对于访问频次较低的表或者分区,用户也可以使用 JindoTable 把对应的数据转为低频或者归档存储类型,或是设置生命周期。在需要对归档数据操作的时候,可以直接用 JindoTable 对归档数据进行解冻。JindoTable 还为用户提供了元数据管理,方便用户检视表或者分区当前的存储状态。JindoTable 让用户能尽可能高效地管理自己的数据,节约成本的同时,不牺牲计算性能。
10.png

小结

对于企业来说,数据湖为各种来源的数据提供了整合的可能性。背靠丰富的云产品体系,数据湖架构可以帮助客户进一步发掘数据价值,实现企业愿景。JindoTable 在数据湖解决方案中,为用户提供数据治理和查询加速的增值功能,进一步降低用户数据入湖的门槛,帮助用户在更低的成本下,实现更高的数据价值。


更多数据湖技术相关的文章请点击:[阿里云重磅发布云原生数据湖体系
](https://developer.aliyun.com/article/772298?spm=a2c6h.12873581.0.dArticle772298.28042b0fFZNGve&groupCode=datalakeformation)


更多数据湖相关信息交流请加入阿里巴巴数据湖技术钉钉群
数据湖钉群.JPG

相关实践学习
基于EMR Serverless StarRocks一键玩转世界杯
基于StarRocks构建极速统一OLAP平台
快速掌握阿里云 E-MapReduce
E-MapReduce 是构建于阿里云 ECS 弹性虚拟机之上,利用开源大数据生态系统,包括 Hadoop、Spark、HBase,为用户提供集群、作业、数据等管理的一站式大数据处理分析服务。 本课程主要介绍阿里云 E-MapReduce 的使用方法。
相关文章
|
4月前
|
存储 安全 API
阿里云EMR数据湖文件系统问题之JindoFS元数据查询和修改请求的问题如何解决
阿里云EMR数据湖文件系统问题之JindoFS元数据查询和修改请求的问题如何解决
|
7月前
|
存储 对象存储 SQL
【获奖名单公示】Hologres实时湖仓分析挑战赛
5分钟快速使用Hologres实时湖仓能力,无需移动数据,直接加速读取存储于数据湖OSS上的Hudi、Delta、Paimon等格式类型的数据
【获奖名单公示】Hologres实时湖仓分析挑战赛
|
7月前
|
存储 人工智能 运维
【云原生企业级数据湖:打破数据孤岛,优化存储成本】
【云原生企业级数据湖:打破数据孤岛,优化存储成本】 随着大数据时代的到来,企业对于数据的处理和存储需求日益增长。如何有效地存储和管理大量数据,同时降低运维成本,成为了企业面临的一大挑战。盛通教育的云原生企业级数据湖方案,正是为了解决这一问题而设计的。
220 1
|
存储 SQL 分布式计算
数据湖管理及优化
本文整理自阿里云开源大数据高级开发工程师杨庆苇在7月17日阿里云数据湖技术专场交流会的分享。
1098 0
数据湖管理及优化
|
SQL 存储 缓存
数据湖实操讲解【 JindoTable 计算加速】第二十讲:Spark 对 OSS 上的 ORC 数据进行查询加速
数据湖 JindoFS+OSS 实操干货 36讲 每周二16点准时直播! 扫文章底部二维码入钉群,线上准时观看~ Github链接: https://github.com/aliyun/alibabacloud-jindofs
数据湖实操讲解【 JindoTable 计算加速】第二十讲:Spark 对 OSS 上的 ORC 数据进行查询加速
|
存储 SQL 分布式计算
数据湖实操讲解【 JindoTable 计算加速】第十九讲:Spark 对 OSS 上的 Parquet 数据进行查询加速
数据湖 JindoFS+OSS 实操干货 36讲 每周二16点准时直播! 扫文章底部二维码入钉群,线上准时观看~ Github链接: https://github.com/aliyun/alibabacloud-jindofs
数据湖实操讲解【 JindoTable 计算加速】第十九讲:Spark 对 OSS 上的 Parquet 数据进行查询加速
|
存储 缓存 分布式计算
数据湖实操讲解【JindoFS 缓存加速】第十四讲:指定表和分区来预先缓存,查询分析更高效
数据湖 JindoFS+OSS 实操干货 36讲 每周二16点准时直播! 扫文章底部二维码入钉群,线上准时观看~ Github链接: https://github.com/aliyun/alibabacloud-jindofs
数据湖实操讲解【JindoFS 缓存加速】第十四讲:指定表和分区来预先缓存,查询分析更高效
|
存储 SQL 缓存
聚焦 | 数据湖分析如何面向对象存储OSS进行优化?
最佳实践,以DLA为例子。DLA致力于帮助客户构建低成本、简单易用、弹性的数据平台,比传统Hadoop至少节约50%的成本。其中DLA Meta支持云上15+种数据数据源(OSS、HDFS、DB、DW)的统一视图,引入多租户、元数据发现,追求边际成本为0,免费提供使用。DLA Lakehouse基于Apache Hudi实现,主要目标是提供高效的湖仓,支持CDC及消息的增量写入,目前这块在加紧产品化中。DLA Serverless Presto是基于Apache PrestoDB研发的,主要是做联邦交互式查询与轻量级ETL。
5402 0
聚焦 | 数据湖分析如何面向对象存储OSS进行优化?
|
存储 SQL 分布式计算
数据湖实操讲解【OSS 访问加速】第十讲:Impala 如何高效查询 OSS 数据
数据湖 JindoFS+OSS 实操干货 36讲 每周二16点准时直播! 扫文章底部二维码入钉群,线上准时观看~ Github链接: https://github.com/aliyun/alibabacloud-jindofs
数据湖实操讲解【OSS 访问加速】第十讲:Impala 如何高效查询 OSS 数据
|
SQL 存储 Java
数据湖实操讲解【OSS 访问加速】第九讲:Presto 如何高效查询 OSS 数据
数据湖 JindoFS+OSS 实操干货 36讲 每周二16点准时直播! 扫文章底部二维码入钉群,线上准时观看~ Github链接: https://github.com/aliyun/alibabacloud-jindofs
数据湖实操讲解【OSS 访问加速】第九讲:Presto 如何高效查询 OSS 数据