数据湖实操讲解【 JindoTable 计算加速】第二十讲:Spark 对 OSS 上的 ORC 数据进行查询加速

本文涉及的产品
EMR Serverless Spark 免费试用,1000 CU*H 有效期3个月
EMR Serverless StarRocks,5000CU*H 48000GB*H
简介: 数据湖 JindoFS+OSS 实操干货 36讲 每周二16点准时直播! 扫文章底部二维码入钉群,线上准时观看~ Github链接: https://github.com/aliyun/alibabacloud-jindofs

本期导读 :【JindoTable 计算加速】第二十讲


主题:Spark 对 OSS 上的 ORC 数据进行查询加速uid+JindoFSOSS 上数据进行训练加速

讲师:健身,阿里巴巴计算平台事业部 EMR 技术专家


内容框架:

  • ORC 简介
  • JindoFS 列存加速
  • 性能对比
  • 演示


直播回放链接:(20讲)

https://developer.aliyun.com/live/247100

一、ORC 简介

ORC:Hadoop 生态的列存系统      

  • 来自 Hive 的列式存储
  • 支持列裁剪
  • 包含类型信息,自描述
  • 支持 Encoding/压缩

image.png

Spark 与 ORC

  • Spark Hive 表

   • CREATE TABLE tablename … STORED AS ORC;

   • 使用 Hive ORC

   •  spark.sql.hive.convertMetastoreOrc

  • Spark Datasource 表

   • CREATE TABLE tablename … USING ORC;

   • 使用Apache ORC


二、JindoFS 列存加速

痛点

  • 对象存储水平扩展能力强,但请求延时高
  • 本地盘/云盘带宽有限,中间数据越少越好
  • IO 需要与 shuffle 数据竞争网络资源
  • 计算越快越好


JindoFS 列存加速

  • JindoTable Native Engine

   • 高速读取

   • 查询计划下推(高速计算)

   • 表/分区/列级别的数据缓存,消除带宽瓶颈和性能波动

  • 支持 JindoFS/OSS
  • 支持 ORC / Parquet 格式
  • 高效的预计算(规划)
  • 可插拔,兼容开源

用法

  • 命令行参数

   •  --conf spark.sql.extensions=com.aliyun.emr.sql.JindoTableExtension

  • 配置到 spark-defaults

   •  spark.sql.extensions       com.aliyun.emr.sql.JindoTableExtension

  • Spark Hive 表需要确保 spark.sql.hive.convertMetastoreOrc = true
  • EMR-3.35/4.9/5.2 之后的版本

加速原理

  • Native Engine 直接把数据排在内存中供上层引擎使用
  • Spark 通过 Unsafe 直接访问数据,无需拷贝数据
  • Native Engine 异步读取文件

   • 数据读取不等待上层引擎消费,性能更高

  • 高并发

   • 文件级别并发

   • 列级别并发

  • Native 实现算子
  • 相比 Java 性能更优

加速架构

  • 一套 Native Engine 支持不同引擎
  • AliORC 提供 ORC 支持
  • Native Engine 运行在 executor/Presto Worker 中(客户端)

image.png

三、性能对比

Spark 性能对比 – 配置

image.png

Spark 性能对比 – 结果

  • 端到端总时间缩短23.6%

image.png

四、演示


  • 配置 Spark
  • 读取鸢尾花数据集以 ORC 格式写入 OSS 路径
  • 从 OSS 查询鸢尾花数据集


相关文档链接:

  • Jindodata 相关文档:

https://github.com/aliyun/alibabacloud-jindodata

  • 计算加速使用文档:

https://help.aliyun.com/document_detail/213329.html




点击回放链接,直接观看第20讲视频回放,获取讲师实例讲解:

   https://developer.aliyun.com/live/247100




Github链接:

https://github.com/aliyun/alibabacloud-jindofs


不错过每次直播信息、探讨更多数据湖 JindoFS+OSS 相关技术问题,欢迎扫码加入钉钉交流群!

69c0a02cc68742fca5d49d92413dc67a.png

相关实践学习
借助OSS搭建在线教育视频课程分享网站
本教程介绍如何基于云服务器ECS和对象存储OSS,搭建一个在线教育视频课程分享网站。
相关文章
|
6月前
|
分布式计算 关系型数据库 MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
85 3
|
5月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
285 2
|
5月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
247 1
|
8月前
|
存储 分布式计算 Java
|
8月前
|
分布式计算 监控 大数据
如何处理 Spark 中的倾斜数据?
【8月更文挑战第13天】
319 4
|
8月前
|
存储 缓存 分布式计算
|
8月前
|
SQL 存储 分布式计算
|
8月前
|
分布式计算 Apache 数据安全/隐私保护
流计算引擎数据问题之在 Spark Structured Streaming 中水印计算和使用如何解决
流计算引擎数据问题之在 Spark Structured Streaming 中水印计算和使用如何解决
96 1
|
9月前
|
分布式计算 数据处理 流计算
实时计算 Flink版产品使用问题之使用Spark ThriftServer查询同步到Hudi的数据时,如何实时查看数据变化
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
10月前
|
弹性计算 分布式计算 DataWorks
DataWorks产品使用合集之spark任务如何跨空间取表数据
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
65 1