基于 IoT+TSDB+Quick BI 云产品架构的楼宇环境监控实战

简介: 无需服务器开发,实现 IoT 业务交付

今天给大家带来基于阿里云 IoT 物联网平台 + TSDB 时序时空数据库 + Quick BI 报表三大云产品组合实现楼宇环境监控端到端开发实战。


少啰嗦,先看效果。
image.png
部署后效果


   0.技术架构   


本次 IoT 物联网开发实战我们在室内部署 4 个温湿度传感器,实时采集数据,每10秒发送到阿里云 IoT 物联网平台,通过规则引擎写入 TSDB时序数据库。在Quick BI 工作台,创建数据报表以分钟维度展示室内温湿度变化曲线。

技术架构如下:
image.png


   1.物联网平台开发   


1.1.免费开通阿里云 IoT物联网云服务:
https://www.aliyun.com/product/iot-deviceconnect
/>



1.2.创建产品室内温湿度计器,选择自定义品类,直连设备,定义物模型,包含2个属性温度,湿度:
image.png


1.3.注册设备,获取身份三元组。


image.png


1.4.配置规则引擎,实时流转数据到 TSDB中
image.png


1.5.完成设备端开发,实时上报温湿度数据。
我们以Node.js脚本来模拟设备上报,代码如下:

// 依赖mqtt库
const mqtt = require('aliyun-iot-mqtt');
// 设备身份
var options = {
    productKey: "device productKey",
    deviceName: "device deviceName",
    deviceSecret: "device deviceSecret",
    regionId: "cn-shanghai"
};

// 建立连接
const client = mqtt.getAliyunIotMqttClient(options);

//模拟 设备 上报数据(原始报文)
setInterval(function() {
    client.publish(
        `/sys/${options.productKey}/${options.deviceName}/thing/event/property/post`
        , getPostData()
        );

}, 10 * 1000);

// 模拟 温湿度
function getPostData() {

    const payload = {
        id: Date.now(),
        version:"1.0",
        params: {
            temperature: 10+Math.floor(Math.random() * Math.floor(50)),
            humidity: 10+Math.floor(Math.random() * Math.floor(50))
        },
        method: "thing.event.property.post"
    }

    console.log("payload=[ " + payload + " ]")
    return JSON.stringify(payload);
}

   2.TSDB数据库   


2.1.创建时序数据库,并开通公网 TSQL 连接串
image.png


2.2.IoT设备数据写入TSDB的记录
image.png


   3.Quick BI   


3.1.开通Quick BI服务,添加数据源,输入TSDB连接参数。
image.png
数据源添加成功
image.png


3.2.基于数据源的温度和湿度指标,创建数据集。
image.png


3.3.创建数据仪表板,并根据业务需求编辑图表。
image.png


3.4.发布仪表板。
image.png


3.5.在浏览器中查看楼宇环境监控报表。
image.png
 


【往期回顾】
1、39张IoT传感器工作原理GIF图汇总
2、IoT 设备发送 MQTT 请求的曲折经历
3、20元体 Arduino 环境监测仪开发
4、智能手持测温枪开发实践
5、JMeter 压测 MQTT 服务性能实战

相关实践学习
助力游戏运营数据分析
本体验通过多产品组合构建了游戏数据运营分析平台,提供全面的游戏运营指标分析功能,并有效的分析渠道效果。更加有效地掌握游戏运营状态,也可充分利用数据分析的结果改进产品体验,提高游戏收益。
Quick BI在业务数据分析中的实战应用
Quick BI 是一款专为云上用户和企业量身打造的新一代自助式智能BI服务平台,其简单易用的可视化操作和灵活高效的多维分析能力,让精细化数据洞察为商业决策保驾护航。为了帮助您更快的学习和上手产品,同时更好地感受QuickBI在业务数据分析实践中的高效价值,下面将以一个真实的数据分析案例为场景带您开启QuickBI产品之旅。场景:假设您是一家大型互联网新零售企业的数据分析师,您的经理刚刚拿到8月份的月度运营分析数据,他发现近期企业运营状况不佳,8月份毛利额环比前几个月下滑较大,三季度存在达标风险。因此将这个任务交给了您,根据订单信息和流量渠道信息等相关数据,分析企业8月份毛利额下滑的关键要素,并将其分享给团队,以便指导相关业务部门采取决策和行动,提高企业整体毛利额。  
相关文章
|
1月前
|
运维 Oracle 容灾
Oracle dataguard 容灾技术实战(笔记),教你一种更清晰的Linux运维架构
Oracle dataguard 容灾技术实战(笔记),教你一种更清晰的Linux运维架构
|
1月前
|
分布式计算 大数据 BI
MaxCompute产品使用合集之MaxCompute项目的数据是否可以被接入到阿里云的Quick BI中
MaxCompute作为一款全面的大数据处理平台,广泛应用于各类大数据分析、数据挖掘、BI及机器学习场景。掌握其核心功能、熟练操作流程、遵循最佳实践,可以帮助用户高效、安全地管理和利用海量数据。以下是一个关于MaxCompute产品使用的合集,涵盖了其核心功能、应用场景、操作流程以及最佳实践等内容。
|
2天前
|
监控 API 数据库
构建高效后端:微服务架构的实战指南
【6月更文挑战第14天】在数字化浪潮下,后端开发面临着前所未有的挑战和机遇。本文将深入探讨微服务架构的设计理念、实现方式及其在现代软件开发中的重要性,为读者提供一份全面而实用的微服务实战手册。
|
30天前
|
缓存 监控 安全
Django框架在大型Web应用中的架构设计与实战
【5月更文挑战第18天】Django框架在构建大型Web应用中扮演重要角色,采用分层架构(数据、业务逻辑、表示层)和多应用组织模式,结合缓存策略(如Memcached、Redis)提升性能。通过异步处理、分布式部署提高响应速度和扩展性。关注数据分区、安全设计及监控日志,确保系统高效、稳定。Django为复杂业务提供坚实基础,助力打造卓越Web系统。
50 7
|
1月前
|
前端开发 Android开发
Android架构组件JetPack之DataBinding玩转MVVM开发实战(四)
Android架构组件JetPack之DataBinding玩转MVVM开发实战(四)
Android架构组件JetPack之DataBinding玩转MVVM开发实战(四)
|
1月前
|
Android开发
Android Jetpack架构开发组件化应用实战,字节跳动+阿里+华为+腾讯等大厂Android面试题
Android Jetpack架构开发组件化应用实战,字节跳动+阿里+华为+腾讯等大厂Android面试题
|
1月前
|
安全 Java 数据安全/隐私保护
Spring Boot优雅实现多租户架构:概念与实战
【4月更文挑战第29天】在多租户系统中,一个应用实例服务于多个租户,每个租户享有独立的数据视图,而应用的基础设施被共享。这样的架构不仅优化了资源使用,还能降低维护和运营成本。本文将详细介绍如何在Spring Boot中实现多租户架构,并提供具体的实战案例。
102 2
|
1月前
|
存储 BI 数据库
数据洞见未来——瓴羊Quick BI荣获邀请,将亮相OceanBase开发者大会
数据洞见未来——瓴羊Quick BI荣获邀请,将亮相OceanBase开发者大会
33 0
|
22天前
|
消息中间件 弹性计算 物联网
【阿里云弹性计算】阿里云ECS在IoT领域的应用:支撑大规模设备连接与数据处理
【5月更文挑战第26天】阿里云ECS是弹性计算服务,支持IoT设备的连接与数据处理。通过MQTT协议实现设备快速接入,配合消息队列处理异构实时数据。ECS可用于部署数据处理工具、应用服务,如智能家居控制系统,通过弹性伸缩适应负载变化。结合阿里云其他服务,ECS为IoT提供完整解决方案,助力企业数字化转型。
37 0
|
9月前
|
编解码 小程序 JavaScript
阿里云IoT小程序应用开发和组件实践
通过实验,了解阿里云IoT小程序的应用开发的方法,了解其内置的基础组件使用,以及基于Vue.js实现可复用的自定义组件的方法。
364 1