分布式架构设计篇(五)-刚性事务之2PC详解

简介: 分布式场景下,多个服务同时对服务一个流程,比如电商下单场景,需要支付服务进行支付、库存服务扣减库存、订单服务进行订单生成、物流服务更新物流信息等。如果某一个服务执行失败,或者网络不通引起的请求丢失,那么整个系统可能出现数据不一致的原因。

一、分布式一致性

分布式场景下,多个服务同时对服务一个流程,比如电商下单场景,需要支付服务进行支付、库存服务扣减库存、订单服务进行订单生成、物流服务更新物流信息等。如果某一个服务执行失败,或者网络不通引起的请求丢失,那么整个系统可能出现数据不一致的原因。
上述场景就是分布式一致性问题,追根到底,分布式一致性的根本原因在于数据的分布式操作,引起的本地事务无法保障数据的原子性引起。
分布式一致性问题的解决思路有两种,一种是分布式事务,一种是尽量通过业务流程避免分布式事务。分布式事务是直接解决问题,二业务规避其实通过解决出问题的地方(解决提问题的人)。其实在真实业务场景中,如果业务规避不是很麻烦的前提,最优雅的解决方案就是业务规避。

二、事务分类

分布式事务实现方案从类型上去分刚性事务、柔型事务。刚性事务:通常无业务改造,强一致性,原生支持回滚/隔离性,低并发,适合短事务。柔性事务:有业务改造,最终一致性,实现补偿接口,实现资源锁定接口,高并发,适合长事务。
刚性事务:XA 协议(2PC、JTA、JTS)、3PC
柔型事务:TCC/FMT、Saga(状态机模式、Aop模式)、本地事务消息、消息事务(半消息)

三、2PC定义

2PC全称Two-PhaseCommit,中文名是二阶段提交,是XA规范的实现思路,XA规范是 X/Open DTP 定义的交易中间件与数据库之间的接口规范(即接口函数),交易中间件用它来通知数据库事务的开始、结束以及提交、回滚等。 XA 接口函数由数据库厂商提供。
 X/Open DTP是X/Open 组织(即现在的 Open Group )1994定义的分布式事务处理模型。 XA规模型包括应用程序( AP )、事务管理器( TM )、资源管理器( RM )、通信资源管理器( CRM )四部分。一般,常见的事务管理器( TM )是交易中间件,常见的资源管理器( RM )是数据库,常见的通信资源管理器( CRM )是消息中间件。

2PC 通常使用到XA中的三个角色TM、AP、RM:
AP:事务发起方,通常为微服务自身;定义事务边界(事务开始、结束),并访问事务边界内的资源
TM:事务协调方,事务操作总控;管理事务全局事务,分配事务唯一标识,监控事务的执行进度,负责事务的提交、回滚、失败恢复。
RM:本地事务资源,根据协调方命令进行操作;管理本地共享资源(既数据库)。

四、2PC流程

2PC 分成2个阶段,第一阶段:请求阶段(commit-request phase,或称表决阶段,voting phase)和第二阶段:提交阶段(commit phase)。

表决阶段:事务协调者(TM)串行给每个参与者(RM)发送Prepare消息,每个参与者要么直接返回失败,要么在本地SQL执行、记录事务日志(Undo、Redo),但不提交,到达一种“万事俱备,只欠东风”的状态。
可以进一步将准备阶段分为以下三个步骤:

1)TM串行向每个参与者节点询问是否可以执行提交操作,并等待各参与者节点的响应。
2)参与者节点执行询问的所有SQL语句,并将Undo和Redo写入日志。
3)各参与者节点响应TM发起的询问。如果参与者节点的事务操作实际执行成功,则返回一个”success”消息;如果参与者节点的事务操作实际执行失败,则返回一个”abort”消息。

提交阶段:如果TM收到了参与者的失败消息或者超时,直接给每个参与者发送回滚(Rollback)消息;否则,发送提交(Commit)消息;参与者根据TM的指令执行提交或者回滚操作,释放所有事务处理过程中使用的锁资源。(注意:必须在最后阶段释放锁资源)
分支一--当TM从所有参与者节点获得的相应消息都为”success”时:

1)TM向所有参与者节点发出”正式提交(commit)”的请求。
2)参与者节点正式完成操作,并释放在整个事务期间内占用的资源。
3)参与者节点向TM发送”完成”消息。
4)TM受到所有参与者节点反馈的”完成”消息后,完成事务。

分支二--如果任一参与者节点在第一阶段返回的响应消息为”abort”,或者 TM在第一阶段的询问超时之前无法获取所有参与者节点的响应消息时:

1)TM向所有参与者节点发出”回滚操作(rollback)”的请求。
2)参与者节点利用之前写入的Undo信息执行回滚,并释放在整个事务期间内占用的资源。
3)参与者节点向TM发送”回滚完成”消息。
4)TM受到所有参与者节点反馈的”回滚完成”消息后,取消事务。

  不管最后结果如何,第二阶段都会结束当前事务。

五、总结

2 PC虽然将XA规范方案细化成思路,也形成了流程图,大部情况下确实能提供原子性操作,但是仍存在一定问题,所以又出现了3PC。

作者介绍

孙玄

毕业于浙江大学,奈学教育创始人兼CEO,前转转公司技术委员会主席,前58集团技术委员会主席,前百度资深研发工程师,腾讯云TVP,阿里云MVP,在线直播大课《百万架构师》品牌创始人。

林淮川

毕业于西安交通大学;奈学教育《百万架构师训练营》讲师及企业级源码内源负责人,前大树金融高级架构师;前大树金融技术委员会开创者;前大树金融供应链金融技术总监;前天阳宏业交易事业部技术主管;多年互联网金融行业(ToB)经验。

目录
相关文章
|
3天前
|
存储 Prometheus Cloud Native
分布式系统架构6:链路追踪
本文深入探讨了分布式系统中的链路追踪理论,涵盖追踪与跨度的概念、追踪系统的模块划分及数据收集的三种方式。链路追踪旨在解决复杂分布式系统中请求流转路径不清晰的问题,帮助快速定位故障和性能瓶颈。文中介绍了基于日志、服务探针和边车代理的数据收集方法,并简述了OpenTracing、OpenCensus和OpenTelemetry等链路追踪协议的发展历程及其特点。通过理解这些概念,可以更好地掌握开源链路追踪框架的使用。
56 41
|
4月前
|
安全 应用服务中间件 API
微服务分布式系统架构之zookeeper与dubbo-2
微服务分布式系统架构之zookeeper与dubbo-2
|
4月前
|
负载均衡 Java 应用服务中间件
微服务分布式系统架构之zookeeper与dubbor-1
微服务分布式系统架构之zookeeper与dubbor-1
|
4月前
|
存储 JSON 数据库
Elasticsearch 分布式架构解析
【9月更文第2天】Elasticsearch 是一个分布式的搜索和分析引擎,以其高可扩展性和实时性著称。它基于 Lucene 开发,但提供了更高级别的抽象,使得开发者能够轻松地构建复杂的搜索应用。本文将深入探讨 Elasticsearch 的分布式存储和检索机制,解释其背后的原理及其优势。
301 5
|
13天前
|
设计模式 存储 算法
分布式系统架构5:限流设计模式
本文是小卷关于分布式系统架构学习的第5篇,重点介绍限流器及4种常见的限流设计模式:流量计数器、滑动窗口、漏桶和令牌桶。限流旨在保护系统免受超额流量冲击,确保资源合理分配。流量计数器简单但存在边界问题;滑动窗口更精细地控制流量;漏桶平滑流量但配置复杂;令牌桶允许突发流量。此外,还简要介绍了分布式限流的概念及实现方式,强调了限流的代价与收益权衡。
57 11
|
9天前
|
人工智能 芯片 Windows
ARM架构PC退货率与CEO策略透视
ARM架构PC退货率与CEO策略透视
|
16天前
|
设计模式 监控 Java
分布式系统架构4:容错设计模式
这是小卷对分布式系统架构学习的第4篇文章,重点介绍了三种常见的容错设计模式:断路器模式、舱壁隔离模式和重试模式。断路器模式防止服务故障蔓延,舱壁隔离模式通过资源隔离避免全局影响,重试模式提升短期故障下的调用成功率。文章还对比了这些模式的优缺点及适用场景,并解释了服务熔断与服务降级的区别。尽管技术文章阅读量不高,但小卷坚持每日更新以促进个人成长。
43 11
|
17天前
|
消息中间件 存储 安全
分布式系统架构3:服务容错
分布式系统因其复杂性,故障几乎是必然的。那么如何让系统在不可避免的故障中依然保持稳定?本文详细介绍了分布式架构中7种核心的服务容错策略,包括故障转移、快速失败、安全失败等,以及它们在实际业务场景中的应用。无论是支付场景的快速失败,还是日志采集的安全失败,每种策略都有自己的适用领域和优缺点。此外,文章还为技术面试提供了解题思路,助你在关键时刻脱颖而出。掌握这些策略,不仅能提升系统健壮性,还能让你的技术栈更上一层楼!快来深入学习,走向架构师之路吧!
53 11
|
19天前
|
自然语言处理 负载均衡 Kubernetes
分布式系统架构2:服务发现
服务发现是分布式系统中服务实例动态注册和发现机制,确保服务间通信。主要由注册中心和服务消费者组成,支持客户端和服务端两种发现模式。注册中心需具备高可用性,常用框架有Eureka、Zookeeper、Consul等。服务注册方式包括主动注册和被动注册,核心流程涵盖服务注册、心跳检测、服务发现、服务调用和注销。
54 12
|
1月前
|
消息中间件 架构师 数据库
本地消息表事务:10Wqps 高并发分布式事务的 终极方案,大厂架构师的 必备方案
45岁资深架构师尼恩分享了一篇关于分布式事务的文章,详细解析了如何在10Wqps高并发场景下实现分布式事务。文章从传统单体架构到微服务架构下分布式事务的需求背景出发,介绍了Seata这一开源分布式事务解决方案及其AT和TCC两种模式。随后,文章深入探讨了经典ebay本地消息表方案,以及如何使用RocketMQ消息队列替代数据库表来提高性能和可靠性。尼恩还分享了如何结合延迟消息进行事务数据的定时对账,确保最终一致性。最后,尼恩强调了高端面试中需要准备“高大上”的答案,并提供了多个技术领域的深度学习资料,帮助读者提升技术水平,顺利通过面试。
本地消息表事务:10Wqps 高并发分布式事务的 终极方案,大厂架构师的 必备方案

热门文章

最新文章