数据分析,机器学习,深度学习,人工智能的关系我画了这张图

简介:

数据分析,机器学习,深度学习,人工智能的关系我画了这张图

我来解释下这张图。

一切技术的出现都是为了解决现实问题,而现实问题分为简单问题和复杂问题。简单问题,需要简单分析,我们使用数据分析。复杂问题,需要复杂分析,我们使用机器学习。

1、什么是简单问题?
比如公司领导想知道每周的销售情况,这种就是简单问题。简单问题可以用数据分析来处理,通过分析数据来分析出有用的信息。

最简单的,你用excel分析一家淘宝店铺的销售数据,每周公司会让你出一份周报一份发现了最近几个月销量下降,然后根据分析产生销量下降的原因是什么,找到原因后制定对应的策略来提高销量。

我们来看一个真实的案例。全球最大的旅行房屋租赁社区Airbnb曾在2011年纠结于新用户增长的缓慢,有一天,他们的数据分析团队发现房源照片的精美程度,跟房源的预定人数成很大的正相关。

于是,他们提出一种假设,即“附有专业摄影照片的房源要更抢手,因此房主肯定会愿意申请Airbnb提供的此项服务”。

他们迅速上线了一个提供专业摄影照片服务的版本,然后跟原版本做A/B Test,发现同一个房源,使用专业摄影服务的比不使用的多了2-3倍的订单量。

2011年后期,Airbnb雇用了20名专业摄影师,以帮助平台上的房主拍摄房屋照片,几乎在同一时间段,Airbnb的订单量曲线有了一个陡峭的增长。

2、什么是复杂问题?
比如我们天天使用的淘宝,它会根据你的历史购物习惯(数据),来给推荐你可能感兴趣的商品。淘宝是如何做到的呢?对于这种复杂问题,淘宝背后使用的就是机器学习。

我再举个例子,今日头条是如何靠机器学习逆袭成为新闻客户端老大的。

2010年前后,门户时代崛起的网易、搜狐、腾讯三巨头向移动端转型,几乎垄断了当时的新闻客户端市场。而仅仅2年后,今日头条,使用“机器学习”这把屠龙刀向用户个人性化推荐用户感兴趣的新闻,一举打破巨头垄断,成为新闻客户端老大。虽然,后来腾讯和网易为了对抗头条,推出了类似的产品的天天快报和网易号,但因起步晚和算法不成熟,都失败了。

下面图片是我在知乎一个问题下回答的传播分析报告

在这份报告中,像点赞数、评论数、收藏数、总阅读量这样的分析就是简单分析。像“你可能感兴趣的人”这样的分析,就是复杂分析,需要通过机器学习算法来找到,类似于豆瓣上给你推荐感兴趣的电影、淘宝上给你推荐感兴趣的商品。

3、什么是深度学习?
机器学习分很多方法(算法),不同的方法解决不同的问题。深度学习是机器学习中的一个分支方法。

深度学习在图像,语音等富媒体的分类和识别上取得了非常好的效果,所以各大研究机构和公司都投入了大量的人力做相关的研究和开发。我说个例子,你肯定听说过。那就是2016年谷歌旗下DeepMind公司开发的阿尔法围棋(AlphaGo)战胜人类顶尖围棋选手。阿尔法围棋的主要工作原理就是“深度学习”。

4、什么是人工智能?
人工智能,它的范围很广,广义上的人工智能泛指通过计算机(机器)实现人的头脑思维,使机器像人一样去决策。

机器学习是实现人工智能的一种技术。所以我把人工智,机器学习,深度学习放到不同的圆圈里,他们三者是包含的关系:

现在,你已经清楚了数据分析>机器学习>深度学习>机器学习这些概念的关系了。当我们从解决现实问题的角度来看,很多概念会清楚。处理不同的问题,使用不同的方法。

5、数据分析与人工智能的关系?
你可能会问了:“上图中没看出数据分析和人工智能有什么关系呀,是不是学习数据分析没什么用?那我是不是一开始就学习机器学习了,这样可以直接进人工智能时代,享受时代红利了?”

这么想是不对的。

机器学习是很多学科的知识融合,而数据分析是机器学习的基础。只有学会了数据分析处理数据的方法,你才能看懂机器学习方面的知识。这就好比,你想上初中(机器学习),必须先读完小学(数据分析)才可以。

所以,我在下面图片中画了两条黄色的线,表示数据分析的两个方向,如果你喜欢深入技术,学会了数据分析,你才能打好基础,去学习机器学习。如果你喜欢商业方面的内容,可以往人工智能业务方向发展。

职业社交网站领英在《2018新兴工作岗位报告》中说,2018年,15个新兴职位里有6个与人工智能相关,这说明,与人工智能相关的技能开始渗透到各个行业,而不仅仅是技术行业。

领英把人工智能技能定义为:开发和有效使用人工智能工具和技术的技能。这是领英上增长最快的一个技能,从全球来看,2015年到2017年这个技能增长了190%。

之前很多人本来就是零基础,却买来一堆机器学习的课程和书来学习,最后看的是晕头转向,觉得自己不适合。

其实,这是走错了路。如果你是零基础,想进入人工智能这个相关的职业,要先从数据分析开始学起。

6、总结
1)人工智能是指使机器像人一样去决策
2)机器学习是实现人工智能的一种技术
3)机器学习分很多方法(算法),不同的方法解决不同的问题。深度学习是机器学习中的一个分支方法。
4)数据分析可以帮助你从零进入人工智能时代。如果你喜欢深入技术,学会了数据分析,你才能打好基础,去学习机器学习。如果你喜欢商业方面的内容,可以往人工智能业务方向发展。
5)下面这张图是它们之间的关系

猴子聊数据分析

zhuanlan.zhihu.com
图标

相关文章
|
14天前
|
机器学习/深度学习 人工智能 算法
【乐器识别系统】图像识别+人工智能+深度学习+Python+TensorFlow+卷积神经网络+模型训练
乐器识别系统。使用Python为主要编程语言,基于人工智能框架库TensorFlow搭建ResNet50卷积神经网络算法,通过对30种乐器('迪吉里杜管', '铃鼓', '木琴', '手风琴', '阿尔卑斯号角', '风笛', '班卓琴', '邦戈鼓', '卡萨巴', '响板', '单簧管', '古钢琴', '手风琴(六角形)', '鼓', '扬琴', '长笛', '刮瓜', '吉他', '口琴', '竖琴', '沙槌', '陶笛', '钢琴', '萨克斯管', '锡塔尔琴', '钢鼓', '长号', '小号', '大号', '小提琴')的图像数据集进行训练,得到一个训练精度较高的模型,并将其
27 0
【乐器识别系统】图像识别+人工智能+深度学习+Python+TensorFlow+卷积神经网络+模型训练
|
4天前
|
机器学习/深度学习 数据采集 人工智能
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
机器学习之深度学习算法概念
深度学习算法是一类基于人工神经网络的机器学习方法,其核心思想是通过多层次的非线性变换,从数据中学习表示层次特征,从而实现对复杂模式的建模和学习。深度学习算法在图像识别、语音识别、自然语言处理等领域取得了巨大的成功,成为人工智能领域的重要技术之一。
23 3
|
11天前
|
机器学习/深度学习 人工智能 文字识别
文本,文字扫描01,OCR文本识别技术展示,一个安卓App,一个简单的设计,文字识别可以应用于人工智能,机器学习,车牌识别,身份证识别,银行卡识别,PaddleOCR+SpringBoot+Andr
文本,文字扫描01,OCR文本识别技术展示,一个安卓App,一个简单的设计,文字识别可以应用于人工智能,机器学习,车牌识别,身份证识别,银行卡识别,PaddleOCR+SpringBoot+Andr
|
10天前
|
机器学习/深度学习 算法 文件存储
使用Python实现深度学习模型:神经架构搜索与自动机器学习
【7月更文挑战第5天】 使用Python实现深度学习模型:神经架构搜索与自动机器学习
23 2
|
12天前
|
机器学习/深度学习 PyTorch TensorFlow
PAI DLC与其他深度学习框架如TensorFlow或PyTorch的异同
PAI DLC与其他深度学习框架如TensorFlow或PyTorch的异同
|
14天前
|
机器学习/深度学习 人工智能 自然语言处理
探索机器学习中的深度学习优化策略
【6月更文挑战第29天】在机器学习领域,深度学习已成为推动人工智能发展的关键力量。本文将深入探讨如何通过一系列创新的优化策略来提升深度学习模型的性能和效率,包括调整学习率、使用先进的优化算法、以及应用正则化技术等。这些方法不仅能够加速模型的训练过程,还能提高模型在新数据上的泛化能力。我们将通过具体案例分析,展示这些策略在实际问题中的应用效果,并讨论其在未来研究中的潜在方向。
|
1天前
|
机器学习/深度学习 人工智能 API
在人工智能和机器学习的领域中,语音识别(Speech Recognition,SR)是一个重要的研究方向。它旨在将人类的语音转换为计算机可读的文本。
在人工智能和机器学习的领域中,语音识别(Speech Recognition,SR)是一个重要的研究方向。它旨在将人类的语音转换为计算机可读的文本。
4 0
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能浪潮之下,机器学习的未来展望
在数字化时代,人工智能(AI)已成为推动技术革新的核心力量。特别是机器学习(ML),作为AI的子集,它的发展不仅重塑了数据处理的方式,还为解决复杂问题提供了新途径。本文将探讨机器学习的现状与未来趋势,包括深度学习、自然语言处理等领域的进展,以及面临的挑战和潜在的解决方案。通过深入分析,旨在为读者揭示机器学习在未来社会中的角色和影响。
8 0
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能、机器学习、深度学习:技术革命的深度解析(二)
人工智能、机器学习、深度学习:技术革命的深度解析(二)
10 0