手把手教你利用Pyecharts库对IP代理数据进行数据可视化分析

简介:

/1 前言/

前几天小编发布了手把手教你使用Python爬取西次代理数据(上篇)和手把手教你使用Python爬取西次代理数据(下篇),木有赶上车的小伙伴,可以戳进去看看。今天小编带对爬取的数据进行可视化操作,数据可视化主要利用 pyecharts 库进行操作,具体步骤如下。

本次爬虫的目的主要是想分析代理在全国各城市的分布情况。小编的思路是对所有城市的代理数量进行一个统计,然后通过可视化技术构建一个代理热力分布图。整体思路是使用 pyecharts 构建一张热力分布图,用以直观展现各个城市的代理分布情况。

/2 代理分布统计/

Pyecharts 在进行热力图绘制的时候,需要提供城市名,但实际上从网上爬取到的位置数据并不是标准的城市名:
这个时候需要我们对这些数据进行处理,从位置中将城市名提取出来,例如:湖北十堰 需要提取出 十堰 来。

为了达到这个目的,我使用开源的** cpca** 库进行提取,该库主要使用结巴分词对数据进行处理,然后比对数据库,将省市县提取出来,一个直观的例子如下:
通过这种方式,我们就可以提取出城市名了,在然后在代码中实现如下:
 提取完城市数据之后,需要对城市的代理数量进行一个统计,总体思路是,构建一个列表。然后循环遍历抓取的城市,如果找到一个列表中没有的城市,就在列表中加入该城市,并把代理设置为 1,如果有该城市,则数量加 1。

通过这种方式,就将代理在各个城市的分布情况统计完毕了。接下来就是使用 pyecharts 进 行热力图绘制了。

/3 代理热力图绘制/

有了代理在各个城市的分布情况,接下来就需要进行热力图绘制,使用 pyecharts 加载我们之前统计好的列表即可, 代码如下:

程序执行完毕后,会在当前页面生成一个名叫全国代理分布.html的网页,使用 chrome或者 firefox 打开该网页即可看到热力分布结果, 如下图所示,其中颜色越深的地方代表代理数量越多。

全国代理分布图

数据视图

统计发现,代理主要分布在东部地区,东部地区又集中分布在广州、江浙、山东一带,而西部地区几乎没有,这也从另外以角度说明了互联网硬件设施在我国发展的很不均衡,绝大多数资源集中到了东部地区。

/4 小结/

本次任务主要爬取了代理网站上的代理数据,对代理在各个城 市的分布进行了统计分析,并利用可视化的技术进行代理分布热力图绘制。主要做了以下方 面的工作:

学习使用 pyecharts 库进行数据可视化;

学习使用 cpca 库进行中文数据分词。

得出了以下结论:

全国各地的网络代理主要分布在东部地区,东部地区又集中分布在广州、江浙、山东一带,而西部地区几乎没有,这也从一个角度说明了互联网硬件设施在我国发展的很不均衡,绝大多数资源集中到了东部地区。

Python 爬虫是一项综合技能,在爬取网站的过程中能够学到很多知识,希望大家多多专研。

如果有需要代码的小伙伴,可以在后台回复“代理”二字,即可获取。
相关文章
|
6月前
|
数据可视化 数据挖掘 大数据
【数据分析与可视化】Matplotlib绘图基础语法讲解(图文解释 超详细)
【数据分析与可视化】Matplotlib绘图基础语法讲解(图文解释 超详细)
179 0
|
12天前
|
数据可视化 数据挖掘
数据可视化的作用是什么?
【10月更文挑战第30天】数据可视化的作用是什么?
22 0
|
1月前
|
数据采集 监控 数据可视化
用Python构建动态折线图:实时展示爬取数据的指南
本文介绍了如何利用Python的爬虫技术从“财富吧”获取中国股市的实时数据,并使用动态折线图展示股价变化。文章详细讲解了如何通过设置代理IP和请求头来绕过反爬机制,确保数据稳定获取。通过示例代码展示了如何使用`requests`和`matplotlib`库实现这一过程,最终生成每秒自动更新的动态股价图。这种方法不仅适用于股市分析,还可广泛应用于其他需要实时监控的数据源,帮助用户快速做出决策。
|
3月前
|
数据采集 存储 数据可视化
基于Python 网络爬虫和可视化的房源信息的设计与实现
本文介绍了一个基于Python Scrapy框架和echart库的房源信息采集与可视化系统,该系统通过自动化爬虫提高房地产数据采集效率,并通过Flask服务器实现数据的Web可视化展示,旨在帮助房地产从业人员和政策制定者高效、直观地了解房源信息。
|
4月前
|
人工智能 数据可视化 数据挖掘
LLM代理应用实战:构建Plotly数据可视化代理
构建数据可视化代理解决了LLM(大型语言模型)在理解和生成定制图表时的局限性。代理提供DataFrame信息和自定义样式工具,简化与LLM的交互。选择了Plotly而非Matplotlib,因其交互性和Web渲染能力更适合现代可视化。代理通过元数据索引了解数据集详情,并根据样式指示生成符合特定审美的图表。通过ReActAgent和Groq模型,代理能理解用户指令,生成准确的Plotly代码,从而创建定制图表,提高了数据可视化的效率和准确性。
109 1
|
6月前
|
数据可视化 Shell Python
如何使用Python实现简单的数据可视化
如何使用Python实现简单的数据可视化
36 0
|
6月前
|
数据采集 自然语言处理 数据可视化
怎么使用Pyecharts库对淘宝数据进行可视化展示
怎么使用Pyecharts库对淘宝数据进行可视化展示
110 0
|
6月前
|
数据可视化 数据挖掘 Python
【数据分析与可视化】Seaborn库简介及风格设置详解(图文解释 超详细)
【数据分析与可视化】Seaborn库简介及风格设置详解(图文解释 超详细)
326 1
|
6月前
|
数据可视化 数据挖掘 Linux
【数据分析与可视化】Seaborn中常用绘图模型讲解及实战(图文解释 附源码)
【数据分析与可视化】Seaborn中常用绘图模型讲解及实战(图文解释 附源码)
142 0
|
数据可视化 前端开发 JavaScript
前端数据可视化的工具和库
前端数据可视化的工具和库
329 0