手把手教你利用Pyecharts库对IP代理数据进行数据可视化分析

简介:

/1 前言/

前几天小编发布了手把手教你使用Python爬取西次代理数据(上篇)和手把手教你使用Python爬取西次代理数据(下篇),木有赶上车的小伙伴,可以戳进去看看。今天小编带对爬取的数据进行可视化操作,数据可视化主要利用 pyecharts 库进行操作,具体步骤如下。

本次爬虫的目的主要是想分析代理在全国各城市的分布情况。小编的思路是对所有城市的代理数量进行一个统计,然后通过可视化技术构建一个代理热力分布图。整体思路是使用 pyecharts 构建一张热力分布图,用以直观展现各个城市的代理分布情况。

/2 代理分布统计/

Pyecharts 在进行热力图绘制的时候,需要提供城市名,但实际上从网上爬取到的位置数据并不是标准的城市名:
这个时候需要我们对这些数据进行处理,从位置中将城市名提取出来,例如:湖北十堰 需要提取出 十堰 来。

为了达到这个目的,我使用开源的** cpca** 库进行提取,该库主要使用结巴分词对数据进行处理,然后比对数据库,将省市县提取出来,一个直观的例子如下:
通过这种方式,我们就可以提取出城市名了,在然后在代码中实现如下:
 提取完城市数据之后,需要对城市的代理数量进行一个统计,总体思路是,构建一个列表。然后循环遍历抓取的城市,如果找到一个列表中没有的城市,就在列表中加入该城市,并把代理设置为 1,如果有该城市,则数量加 1。

通过这种方式,就将代理在各个城市的分布情况统计完毕了。接下来就是使用 pyecharts 进 行热力图绘制了。

/3 代理热力图绘制/

有了代理在各个城市的分布情况,接下来就需要进行热力图绘制,使用 pyecharts 加载我们之前统计好的列表即可, 代码如下:

程序执行完毕后,会在当前页面生成一个名叫全国代理分布.html的网页,使用 chrome或者 firefox 打开该网页即可看到热力分布结果, 如下图所示,其中颜色越深的地方代表代理数量越多。

全国代理分布图

数据视图

统计发现,代理主要分布在东部地区,东部地区又集中分布在广州、江浙、山东一带,而西部地区几乎没有,这也从另外以角度说明了互联网硬件设施在我国发展的很不均衡,绝大多数资源集中到了东部地区。

/4 小结/

本次任务主要爬取了代理网站上的代理数据,对代理在各个城 市的分布进行了统计分析,并利用可视化的技术进行代理分布热力图绘制。主要做了以下方 面的工作:

学习使用 pyecharts 库进行数据可视化;

学习使用 cpca 库进行中文数据分词。

得出了以下结论:

全国各地的网络代理主要分布在东部地区,东部地区又集中分布在广州、江浙、山东一带,而西部地区几乎没有,这也从一个角度说明了互联网硬件设施在我国发展的很不均衡,绝大多数资源集中到了东部地区。

Python 爬虫是一项综合技能,在爬取网站的过程中能够学到很多知识,希望大家多多专研。

如果有需要代码的小伙伴,可以在后台回复“代理”二字,即可获取。
相关文章
|
JSON 数据可视化 数据处理
Python基础综合案例-数据可视化(折线图)
今天给大家带来的是Python综合实战开发的数据可视化操作 通过python实现对数据的分析、可视化
135 0
|
数据可视化 定位技术 Python
Python基础综合案例-数据可视化(地图)
今天给大家带来的是Python综合实战开发的数据可视化操作 通过python实现对数据的分析、可视化
132 0
|
8月前
|
数据可视化 大数据 C++
Python数据可视化技术与库:展现数据之美
在大数据时代,数据可视化成为了理解和传达数据的重要手段。本文将介绍Python中两个强大的数据可视化库,Seaborn和Plotly,探讨它们的特点、应用场景和使用方法,帮助读者更好地利用这些工具展现数据之美。
70 2
|
5月前
|
数据采集 数据可视化 关系型数据库
基于Python 爬虫的房地产数据可视化分析与实现
本文介绍了一个基于Python爬虫的房地产数据可视化分析系统,该系统通过BeautifulSoup框架采集房源信息、使用pandas进行数据处理、MySQL存储数据,并利用pyechart实现数据可视化,帮助用户高效获取和分析房源数据,从而做出更明智的购房决策。
373 1
基于Python 爬虫的房地产数据可视化分析与实现
|
6月前
|
人工智能 数据可视化 数据挖掘
LLM代理应用实战:构建Plotly数据可视化代理
构建数据可视化代理解决了LLM(大型语言模型)在理解和生成定制图表时的局限性。代理提供DataFrame信息和自定义样式工具,简化与LLM的交互。选择了Plotly而非Matplotlib,因其交互性和Web渲染能力更适合现代可视化。代理通过元数据索引了解数据集详情,并根据样式指示生成符合特定审美的图表。通过ReActAgent和Groq模型,代理能理解用户指令,生成准确的Plotly代码,从而创建定制图表,提高了数据可视化的效率和准确性。
121 1
|
8月前
|
数据可视化 Shell Python
如何使用Python实现简单的数据可视化
如何使用Python实现简单的数据可视化
42 0
|
5月前
|
数据可视化 前端开发 JavaScript
基于python flask +pyecharts实现的气象数据可视化分析大屏
本文介绍了一个基于Python Flask和Pyecharts技术实现的气象数据可视化分析大屏,该系统通过图表展示气象数据,提供实时监测和数据分析功能,帮助用户和决策者进行有效应对措施的制定。
162 0
|
8月前
|
数据可视化 数据挖掘 数据处理
利用Python实现简单的数据可视化分析
本文将介绍如何利用Python中的Matplotlib库和Pandas库,通过示例代码演示如何对数据进行简单的可视化分析,为读者展示数据可视化在技术领域的重要性和应用价值。
|
8月前
|
数据采集 自然语言处理 数据可视化
怎么使用Pyecharts库对淘宝数据进行可视化展示
怎么使用Pyecharts库对淘宝数据进行可视化展示
132 0
|
监控 数据可视化 JavaScript
内网控制软件的数据可视化:使用D3.js创建交互式图表
在现代企业中,数据管理和可视化变得至关重要。内网控制软件的用户权限管理和监控是确保安全性的关键部分。但如何有效地管理和可视化数据呢?本文将介绍如何使用D3.js创建交互式图表,以实现内网控制软件的数据可视化。
222 1