什么是数据湖分析?

简介: 数据湖分析(Data Lake Analytics,DLA)是无服务器(Serverless)化的云上交互式查询分析服务。无需ETL,就可通过DLA在云上通过标准JDBC直接对阿里云OSS,TableStore,RDS,MongoDB等不同数据源中存储的数据进行查询和分析。

云栖号快速入门:【点击查看更多云产品快速入门】
不知道怎么入门?这里分分钟解决新手入门等基础问题,可快速完成产品配置操作!

数据湖分析(Data Lake Analytics,DLA)是无服务器(Serverless)化的云上交互式查询分析服务。无需ETL,就可通过DLA在云上通过标准JDBC直接对阿里云OSS,TableStore,RDS,MongoDB等不同数据源中存储的数据进行查询和分析。DLA无缝集成各类商业分析工具,提供便捷的数据可视化。

DLA提供了几大核心亮点:

  • 轻松分析多源数据:OSS,TableStore,RDS等,让不同存储源中沉睡已久的数据,具备分析能力。
  • 能够对异构数据源做关联分析。
  • 全Serverless结构,无需长期持有成本,完全按需使用,更灵活,资源伸缩方便,升级无感知。

image

本文来自 阿里云文档中心 数据湖分析 什么是数据湖分析

【云栖号在线课堂】每天都有产品技术专家分享!
课程地址:https://yqh.aliyun.com/zhibo

立即加入社群,与专家面对面,及时了解课程最新动态!
【云栖号在线课堂 社群】https://c.tb.cn/F3.Z8gvnK

目录
相关文章
|
6月前
|
存储 消息中间件 SQL
基于 Apache Hudi 构建分析型数据湖
基于 Apache Hudi 构建分析型数据湖
62 4
|
6月前
|
存储 SQL 算法
图加速数据湖分析-GeaFlow和Apache Hudi集成
图加速数据湖分析-GeaFlow和Apache Hudi集成
57 3
|
存储 分布式计算 OLAP
深度干货|谈谈阿里云AnalyticDB Spark如何构建低成本数据湖分析
本文将分享AnalyticDB MySQL Spark助力构建低成本数据湖分析的最佳实践。
|
SQL 弹性计算 分布式计算
使用EMR+DLF+OSS-HDFS进行数据湖分析
本实验通过使用EMR,搭建EMR集群,对OSS-HDFS进行数据湖分析
|
存储 SQL 分布式计算
图加速数据湖分析-GeaFlow和Hudi集成
本文主要分析了表模型的现状和问题,然后介绍了图模型在处理关系运算上的优势,接着介绍了图计算引擎GeaFlow和数据湖格式hudi的整合,利用图计算引擎加速数据湖上的关系运算.
图加速数据湖分析-GeaFlow和Hudi集成
|
SQL 机器学习/深度学习 存储
阿里云数据湖分析简介和购买流程
云原生数据湖分析(简称DLA)是新一代大数据解决方案,采取计算与存储完全分离的架构,支持数据库(RDS\PolarDB\NoSQL)与消息实时归档建仓,提供弹性的Spark与Presto,满足在线交互式查询、流处理、批处理、机器学习等诉求,也是传统Hadoop方案上云的有竞争力的解决方案。
|
SQL Web App开发 存储
EMR数据湖开发治理之用户画像分析-3
EMR数据湖开发治理之用户画像分析-3
235 1
EMR数据湖开发治理之用户画像分析-3
|
存储 数据采集 分布式计算
数据湖架构的优势与挑战:数据存储和分析策略
随着大数据时代的到来,数据湖架构逐渐成为许多企业进行数据存储和分析的首选方案。数据湖是一种用于存储大量原始和结构化数据的中心化存储库。在本文中,我们将深入探讨数据湖架构的优势和挑战,并介绍一些常见的数据存储和分析策略。
497 0
|
存储 SQL JSON
【数据湖】Azure 数据湖分析(Azure Data Lake Analytics )概述
【数据湖】Azure 数据湖分析(Azure Data Lake Analytics )概述
|
搜索推荐 定位技术
EMR数据湖开发治理之用户画像分析-4
EMR数据湖开发治理之用户画像分析-4
133 0
EMR数据湖开发治理之用户画像分析-4
下一篇
无影云桌面