简介Jupyter Notebook | Python 数据可视化库 Matplotlib 快速入门之二

简介: 本节重点介绍了Jupyter Notebook是什么,以及Jupyter Notebook在画图和数据展示方面的优势。

环境搭建 | Python 数据可视化库 Matplotlib 快速入门之一

Jupyter Notebook使用

学习目标

  • 目标

    • 学会使用Jupyter Notebook编写运行代码
  • 应用

    • 创建文件
    • 操作cell
    • 运行操作
  • 内容预览

    • 1.2.1 Jupyter Notebook介绍
    • 1.2.2 为什么使用Jupyter Notebook?
    • 1.2.3 Jupyter Notebook的使用-helloworld

      • 1 界面启动、创建文件
      • 2 cell操作
      • 3 markdown演示

Jupyter Notebook介绍

Jupyter项目是一个非盈利的开源项目,源于2014年的ipython项目, 并逐渐发展为支持跨所有编程语言的交互式数据科学计算的工具。

  • Jupyter Notebook,原名IPython Notbook,是IPython的加强网页版,一个开源Web应用程序
  • 名字源自Julia、Python和R(数据科学的三种开源语言) ju-Julia、py-Python、ter-R。
    Jupiter:木星、宙斯
  • 是一款程序员和科学工作者的编程/文档/笔记/展示软件
  • .ipynb文件格式是用于计算型叙述的JSON文档格式的正式规范

image.png

Jupyter项目旨在开发跨几十种编程语言的开源软件, 开放标准和用于交互式计算的服务。

为什么使用Jupyter Notebook

  • 传统软件开发:工程/目标明确

    • 需求分析,设计架构,开发模块,测试
  • 数据挖掘:艺术/目标不明确

    • 目的是具体的洞察目标,而不是机械的完成任务
    • 通过执行代码来理解问题
    • 迭代式地改进代码来改进解决方法

实时运行的代码、叙事性的文本和可视化被整合在一起,方便使用代码和数据来讲述故事。

对比Jupyter Notebook和Pycharm

  • 画图方面的优势

在画图方面,Pycharm运行之后会阻塞,需要把图片关掉才能继续运行。

def matplotlib_demo():
    """
    简单演示matplotlib
    :return: None
    """
    plt.figure(figsize=(20, 8), dpi=100)
    plt.plot([1, 2, 3], [4, 5, 6])
    plt.show()
    
    return None
    
def read_csv_demo():
    """
    简单演示读取数据
    :return: None
    """
    stock_day = pd.read_csv("./stock_day/stock_day.csv")
    
    print(stock_day)
    return None
    
    
if__name__=="_main__":
    #代码1:简单演示matplotLib
    matplotlib_demo()
    #代码2:简单演示读取数据
    read_csv_demo()

执行结果:

image.pngimage.png

Jupyter Notebook:

import matplotlib.pyplot as plt
%matplotlib inline

plt.figure()
plt.plot([1, 0, 9], [4, 5, 6])
plt.show()

执行结果:


image.png

  • 数据展示方面的优势:
import pandas as pd
stock_day = pd.read_csv("./stock_day/stock_day.csv")

stock_day

执行结果:

image.png

在数据量比较庞大时,Pycharm运行会比较慢,且关闭之后每次都要重新运行,耗时。

总结:Jupyter Notebook相比Pycharm、Ipython在画图和数据展示方面更有优势。

配套视频课程,点击这里查看

获取更多资源请订阅Python学习站

相关文章
|
3月前
|
Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
|
6天前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
38 8
|
2月前
|
网络协议 Java Linux
PyAV学习笔记(一):PyAV简介、安装、基础操作、python获取RTSP(海康)的各种时间戳(rtp、dts、pts)
本文介绍了PyAV库,它是FFmpeg的Python绑定,提供了底层库的全部功能和控制。文章详细讲解了PyAV的安装过程,包括在Windows、Linux和ARM平台上的安装步骤,以及安装中可能遇到的错误和解决方法。此外,还解释了时间戳的概念,包括RTP、NTP、PTS和DTS,并提供了Python代码示例,展示如何获取RTSP流中的各种时间戳。最后,文章还提供了一些附录,包括Python通过NTP同步获取时间的方法和使用PyAV访问网络视频流的技巧。
382 4
PyAV学习笔记(一):PyAV简介、安装、基础操作、python获取RTSP(海康)的各种时间戳(rtp、dts、pts)
|
1月前
|
数据采集 数据可视化 数据处理
如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`)
本文介绍了如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`),加载历史数据,计算均线和其他技术指标,实现交易逻辑,记录和可视化交易结果。示例代码展示了如何根据均线交叉和价格条件进行开仓、止损和止盈操作。实际应用时需注意数据质量、交易成本和风险管理。
65 5
|
2月前
|
机器学习/深度学习 数据可视化 数据挖掘
【10月更文挑战第4天】「Mac上学Python 5」入门篇5 - Jupyter 环境配置与高效使用技巧
本篇将介绍如何在Mac系统上安装和配置Jupyter,并详细介绍Jupyter Notebook的一些常用“神奇函数”。Jupyter是一个支持交互式计算的工具,广泛用于数据分析、机器学习等领域,通过学习本篇,用户将能够在Python项目中高效使用Jupyter Notebook。
73 3
【10月更文挑战第4天】「Mac上学Python 5」入门篇5 - Jupyter 环境配置与高效使用技巧
|
2月前
|
程序员 PHP Python
Python3 简介
【10月更文挑战第8天】Python3 简介。
32 4
|
2月前
|
存储 关系型数据库 数据库
轻量级数据库的利器:Python 及其内置 SQLite 简介
轻量级数据库的利器:Python 及其内置 SQLite 简介
65 3
|
3月前
|
数据可视化 数据挖掘 API
使用Python进行数据可视化:探索Matplotlib和Seaborn库
【9月更文挑战第19天】在数据科学领域,将复杂的数据集转换成直观、易懂的图形是一项基本而关键的技能。本文旨在通过Python编程语言介绍两个强大的数据可视化库——Matplotlib和Seaborn,以及它们如何帮助数据分析师和研究人员揭示数据背后的故事。我们将从基础概念讲起,逐步深入到高级技巧,确保无论读者的背景如何,都能获得必要的知识和启发,以在自己的项目中实现有效的数据可视化。
|
3月前
|
数据采集 算法 数据处理
Python中的列表推导式:简介与应用
【9月更文挑战第14天】本文旨在介绍Python中一种强大且简洁的构造列表的方法——列表推导式。我们将从基础语法入手,通过实例演示其用法,并探讨在数据处理和算法优化中的应用价值。文章将不包含代码示例,而是专注于概念理解和应用场景的描述,以促进读者对列表推导式的深入认识。
86 3
|
7月前
|
Linux 开发工具 C语言
30天python速成-第一天(python简介及下载安装)
30天python速成-第一天(python简介及下载安装)