简介Jupyter Notebook | Python 数据可视化库 Matplotlib 快速入门之二

简介: 本节重点介绍了Jupyter Notebook是什么,以及Jupyter Notebook在画图和数据展示方面的优势。

环境搭建 | Python 数据可视化库 Matplotlib 快速入门之一

Jupyter Notebook使用

学习目标

  • 目标

    • 学会使用Jupyter Notebook编写运行代码
  • 应用

    • 创建文件
    • 操作cell
    • 运行操作
  • 内容预览

    • 1.2.1 Jupyter Notebook介绍
    • 1.2.2 为什么使用Jupyter Notebook?
    • 1.2.3 Jupyter Notebook的使用-helloworld

      • 1 界面启动、创建文件
      • 2 cell操作
      • 3 markdown演示

Jupyter Notebook介绍

Jupyter项目是一个非盈利的开源项目,源于2014年的ipython项目, 并逐渐发展为支持跨所有编程语言的交互式数据科学计算的工具。

  • Jupyter Notebook,原名IPython Notbook,是IPython的加强网页版,一个开源Web应用程序
  • 名字源自Julia、Python和R(数据科学的三种开源语言) ju-Julia、py-Python、ter-R。
    Jupiter:木星、宙斯
  • 是一款程序员和科学工作者的编程/文档/笔记/展示软件
  • .ipynb文件格式是用于计算型叙述的JSON文档格式的正式规范

image.png

Jupyter项目旨在开发跨几十种编程语言的开源软件, 开放标准和用于交互式计算的服务。

为什么使用Jupyter Notebook

  • 传统软件开发:工程/目标明确

    • 需求分析,设计架构,开发模块,测试
  • 数据挖掘:艺术/目标不明确

    • 目的是具体的洞察目标,而不是机械的完成任务
    • 通过执行代码来理解问题
    • 迭代式地改进代码来改进解决方法

实时运行的代码、叙事性的文本和可视化被整合在一起,方便使用代码和数据来讲述故事。

对比Jupyter Notebook和Pycharm

  • 画图方面的优势

在画图方面,Pycharm运行之后会阻塞,需要把图片关掉才能继续运行。

def matplotlib_demo():
    """
    简单演示matplotlib
    :return: None
    """
    plt.figure(figsize=(20, 8), dpi=100)
    plt.plot([1, 2, 3], [4, 5, 6])
    plt.show()
    
    return None
    
def read_csv_demo():
    """
    简单演示读取数据
    :return: None
    """
    stock_day = pd.read_csv("./stock_day/stock_day.csv")
    
    print(stock_day)
    return None
    
    
if__name__=="_main__":
    #代码1:简单演示matplotLib
    matplotlib_demo()
    #代码2:简单演示读取数据
    read_csv_demo()

执行结果:

image.pngimage.png

Jupyter Notebook:

import matplotlib.pyplot as plt
%matplotlib inline

plt.figure()
plt.plot([1, 0, 9], [4, 5, 6])
plt.show()

执行结果:


image.png

  • 数据展示方面的优势:
import pandas as pd
stock_day = pd.read_csv("./stock_day/stock_day.csv")

stock_day

执行结果:

image.png

在数据量比较庞大时,Pycharm运行会比较慢,且关闭之后每次都要重新运行,耗时。

总结:Jupyter Notebook相比Pycharm、Ipython在画图和数据展示方面更有优势。

配套视频课程,点击这里查看

获取更多资源请订阅Python学习站

相关文章
|
6月前
|
人工智能 Python
python基本数据类型简介
本文简要介绍了Python的基本数据类型,包括整型、浮点型、字符串、列表、字典和布尔类型,帮助读者对Python数据类型有初步了解。
210 0
|
10月前
|
数据采集 运维 Java
课时13:Python简介
今天我们分享的是 Python 的简单介绍,主要分为以下四部分。 1. Python 的百科介绍 2. Python 的发明者 3. Python 的发展历史 4. Python 的用途
246 1
|
数据可视化 数据挖掘 开发者
Pandas数据可视化:matplotlib集成(df)
Pandas 是 Python 中强大的数据分析库,Matplotlib 是常用的绘图工具。两者结合可方便地进行数据可视化,帮助理解数据特征和趋势。本文从基础介绍如何在 Pandas 中集成 Matplotlib 绘制图表,如折线图、柱状图等,并深入探讨常见问题及解决方案,包括图表显示不完整、乱码、比例不合适、多子图布局混乱、动态更新图表等问题,提供实用技巧和代码示例。掌握这些方法后,你将能更高效地处理数据可视化任务。
419 9
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
569 8
|
移动开发 数据可视化 数据挖掘
利用Python实现数据可视化:以Matplotlib和Seaborn为例
【10月更文挑战第37天】本文旨在引导读者理解并掌握使用Python进行数据可视化的基本方法。通过深入浅出的介绍,我们将探索如何使用两个流行的库——Matplotlib和Seaborn,来创建引人入胜的图表。文章将通过具体示例展示如何从简单的图表开始,逐步过渡到更复杂的可视化技术,帮助初学者构建起强大的数据呈现能力。
|
数据可视化 JavaScript 前端开发
Python中交互式Matplotlib图表
【10月更文挑战第20天】Matplotlib 是 Python 中最常用的绘图库之一,但默认生成的图表是静态的。通过结合 mpld3 库,可以轻松创建交互式图表,提升数据可视化效果。本文介绍了如何使用 mpld3 在 Python 中创建交互式散点图、折线图和直方图,并提供了详细的代码示例和安装方法。通过添加插件,可以实现缩放、平移和鼠标悬停显示数据标签等交互功能。希望本文能帮助读者掌握这一强大工具。
|
数据采集 数据可视化 数据处理
如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`)
本文介绍了如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`),加载历史数据,计算均线和其他技术指标,实现交易逻辑,记录和可视化交易结果。示例代码展示了如何根据均线交叉和价格条件进行开仓、止损和止盈操作。实际应用时需注意数据质量、交易成本和风险管理。
783 5
|
数据可视化 定位技术 Python
Python数据可视化--Matplotlib--入门
Python数据可视化--Matplotlib--入门
153 0
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
|
数据可视化 数据挖掘 Linux
震撼发布!Python数据分析师必学,Matplotlib与Seaborn数据可视化实战全攻略!
在数据科学领域,数据可视化是连接数据与洞察的桥梁,能让复杂的关系变得直观。本文通过实战案例,介绍Python数据分析师必备的Matplotlib与Seaborn两大可视化工具。首先,通过Matplotlib绘制基本折线图;接着,使用Seaborn绘制统计分布图;最后,结合两者在同一图表中展示数据分布与趋势,帮助你提升数据可视化技能,更好地讲述数据故事。
339 1

推荐镜像

更多