小姐姐亲身体验:在阿里数据库科研团队实习是种怎样的体验?

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 Tair(兼容Redis),内存型 2GB
简介: “对于有志于数据库领域研究的小伙伴,这里是最好的学习和工作平台。 ”

作者简介:

张心怡,北京大学前沿交叉研究院研究生,中国人民大学信息学院本科生。从18年底开始在POLARDB-X团队智能数据库组的实习,现已在阿里度过了一年多的时光。

心怡说,对于有志于数据库领域研究的小伙伴,这里是最好的学习和工作平台。

01、优秀的同行人,助我成长

我所在组的研究方向是智能数据库,目标是利用机器学习和统计优化等技术,实现数据库系统各个组件的自动优化,如存储引擎,并发控制,SQL优化器等,以减少系统成本,提升系统性能,以实现一个self-driving的数据库系统。

这是一个很有前景的方向。大四上学期,初来实习的我内心其实颇为忐忑,面对组里的同事前辈,“跟不上进度”成了我最担心的事情。然而,进入到工作状态之后,我心里的石头落了地:mentor给实习生安排的任务是循序渐进的,一次次讨论与指导,使我能够快速上手。

经过和mentor的讨论,我选择把“智能查询优化”作为第一个研究项目,并且与大四学期的毕设结合,基于阿里线上平台的实际问题,展开研究。

查询优化属于数据库比较底层的部分,之前我没有很深的了解。在开展研究的过程中,除了自己阅读文献,同事成为了我的“知识宝库”。遇到场景落地问题时,我会请教PolarDB-X优化器开发的同事,他们往往能够一针见血地指出实际问题。

我的成长离不开组里各位老师的帮助与分享,组内还会定期或不定期组织reading group,讲解工作成果与学界进展。在这里,你会发现身边的同事大多对深耕于某一领域,实力扎实,与他们交流会收获很多!

02、快乐工作,认真生活

“快乐工作,认真生活”,记得我刚刚入职时HR提到了这个观点,入职之后我发现这是阿里人身体力行的一句话。

在工作上,身边的人都很努力。在这种氛围的感召下,遇到难题,我也会情不自禁地在工位上多坐一会。暑期实习的时候,时常9点之后结束工作,打车回宿舍。

生活上,团队里组织了丰富多彩的活动。聚餐已经成为了常规项目。工作间隙还可以去健身房锻炼一波,园区的按摩椅也成为了养生女孩的午休项目。

印象最深的是团队组织的运动会,女子项目是平板支撑。听到这个消息之后,我基本每天都进行练习。运动会那天,杭州base、北京base、硅谷base进行了三地PK,在同事的加油下,我坚持了平板支持7分25秒,最后拿到了女子组冠军。

大家的工作与生活模式都很健康充实。在阿里,我见识到了工作发展的可持续性与优秀的团队交互模式。

冠军.jpg

获得运动会冠军

03、阿里实习,带我打开科研大门

来到阿里之前,我是一个对科研比较懵懂的门外汉。特别幸运的是,在这里我遇到了很棒的mentor们指导我进行研究工作。

不论是基础的代码风格还是研究思路、遇到的问题,mentor都会事无巨细地进行引导。以前我写代码,能跑起来、自己看得懂就行。

我在阿里提交的第一次merge request,有不少随意的空行和一些tricky且难以维护的逻辑。印象很深的是,当时mentor逐行写了comment指出问题。我认识到了代码的规范性和可维护性,以及别人是否能够理解自己的代码都是要考虑的问题。

2019年我从中国人民大学毕业,来到北京大学攻读数据科学研究生,感谢我的研究生导师崔斌老师对我在阿里实习的支持。当时,我在阿里研究的第一个课题,也画上了圆满的句号:我在NDBC(CCF National Database Conference)进行了课题报告,投稿论文并被评为best student paper。

NDBC.jpg

参加NDBC

我在阿里参与研究的第二个课题是数据库的智能调参。传统的数据库调参中DBA基于经验与尝试推荐参数值,而我们要做的是基于机器学习算法自动高效给出推荐。

这个课题在进行过程中遇到了不少困难,算法的适用性与有效性是我们重点考虑的。在进行了很久的实验之后,会发现一些坑和问题,挫败感是有的,但是会马上被新的尝试与期待替代。

我发现,在这里的研究并不是为了学术灌水而做,有意义研究是问题导向的。mentor时常强调要找到可复现的场景和实际问题,这样才有实际意义。我的mentor base在硅谷,因为时差我时不时在早上收到消息和反馈,这成为了我起床开启新的一天的最大动力。mentor是我科研路上的引路人,也是并肩作战的战友,大家一起为了攻克问题而努力!

阿里的实习经历,帮我找到了打开科研大门的钥匙,让我从对科研的懵懵懂懂,到爱上了这一发现问题、攻克问题的过程。我希望将来能继续数据库领域的研究工作,在玉洁冰清的逻辑世界继续追寻。

目录
相关文章
|
7月前
|
SQL 关系型数据库 MySQL
2024年阿里云数据库创建_数据库账号密码和连接教程
阿里云数据库怎么使用?阿里云百科整理阿里云数据库从购买到使用全流程,阿里云支持MySQL、SQL Server、PostgreSQL和MariaDB等数据库引擎,阿里云数据库具有高可用、高容灾特性,阿里云提供数据库备份、恢复、迁移全套解决方案。详细阿里云数据库购买和使用流程方法如下
|
7月前
|
关系型数据库 物联网 分布式数据库
带团队做数据库研发中印象深刻的故事
本文以游戏行业介绍PolarDB的发展。
135 0
|
7月前
|
Cloud Native 关系型数据库 分布式数据库
阿里云原生数据库 PolarDB MySQL:云原生时代的数据库新篇章
阿里云原生数据库 PolarDB MySQL,它是阿里云自主研发的下一代云原生关系型数据库。PolarDB具有多主多写、多活容灾、HTAP等特性,交易性能和存储容量均表现出色。此外,PolarDB MySQL Serverless具有动态弹性升降资源和全局一致性等特性,能够适应高吞吐写入和高并发业务场景。本文详细分析了PolarDB的性能、稳定性和可扩展性,以及它在成本、性能和稳定性方面的优势。PolarDB为企业提供了高效、可靠的数据库解决方案,是值得考虑的选择。
390 0
|
3月前
|
存储 关系型数据库 MySQL
【阿里规约】阿里开发手册解读——数据库和ORM篇
从命名规范、建表规范、查询规范、索引规范、操作规范等角度出发,详细阐述MySQL数据库使用过程中所需要遵循的各种规范。
|
7月前
|
弹性计算 运维 Serverless
Serverless 应用引擎产品使用之在阿里函数计算中,使数据库和阿里云函数计算位于同一个内网中如何解决
阿里云Serverless 应用引擎(SAE)提供了完整的微服务应用生命周期管理能力,包括应用部署、服务治理、开发运维、资源管理等功能,并通过扩展功能支持多环境管理、API Gateway、事件驱动等高级应用场景,帮助企业快速构建、部署、运维和扩展微服务架构,实现Serverless化的应用部署与运维模式。以下是对SAE产品使用合集的概述,包括应用管理、服务治理、开发运维、资源管理等方面。
1639 0
Serverless 应用引擎产品使用之在阿里函数计算中,使数据库和阿里云函数计算位于同一个内网中如何解决
|
7月前
|
JavaScript 小程序 Java
实习与就业|基于Springboot+vue的实习与就业管理系统(源码+数据库+文档)
实习与就业|基于Springboot+vue的实习与就业管理系统(源码+数据库+文档)
64 0
|
7月前
|
小程序 JavaScript Java
实习记录小程序|基于SSM的实习记录小程序设计与实现(源码+数据库+文档)
实习记录小程序|基于SSM的实习记录小程序设计与实现(源码+数据库+文档)
42 0
|
7月前
|
JavaScript 小程序 Java
实习|基于SSM的实习管理系统设计与实现(源码+数据库+文档)
实习|基于SSM的实习管理系统设计与实现(源码+数据库+文档)
61 0
|
7月前
|
Java 数据处理 调度
更高效准确的数据库内部任务调度实践,阿里云数据库SelectDB 内核 Apache Doris 内置 Job Scheduler 的实现与应用
Apache Doris 2.1 引入了内置的 Job Scheduler,旨在解决依赖外部调度系统的问题,提供秒级精确的定时任务管理。
|
7月前
|
数据可视化 Java 测试技术
基于SpringBoot的毕业生实习与就业管理系统(系统+数据库+文档)
基于SpringBoot的毕业生实习与就业管理系统(系统+数据库+文档)