3月26日Spark社区技术直播【Office Depot利用Analytics Zoo构建智能推荐系统的实践分享 】

本文涉及的产品
EMR Serverless StarRocks,5000CU*H 48000GB*H
简介: 大量实验结果表明深度学习能更好地帮助商家为用户个性化推荐感兴趣的商品。Office Depot将Analytics Zoo工具包引入到他们的推荐系统中,在Spark集群上分布式训练了各种推荐算法模型,实验结果相比于传统的推荐算法有了十分显著的提升,本次分享主要介绍Office Depot使用Analytics Zoo构建智能推荐系统的实践经验。

主题:

Office Depot利用Analytics Zoo构建智能推荐系统的实践分享

时间:

2020.3.26(周四)19:00

参与方式:

扫描下方二维码加入钉钉群,群内直接观看

或点击直播间链接:

https://developer.aliyun.com/live/2484

讲师:黄凯

Intel数据分析团队软件工程师。负责开发基于Apache Spark的深度学习框架,同时支持企业客户在大数据平台上构建端到端的深度学习应用。他是Analytics Zoo和BigDL的核心贡献者之一。

直播简介:

大量实验结果表明深度学习能更好地帮助商家为用户个性化推荐感兴趣的商品。Office Depot将Analytics Zoo工具包引入到他们的推荐系统中,在Spark集群上分布式训练了各种推荐算法模型,实验结果相比于传统的推荐算法有了十分显著的提升,本次分享主要介绍Office Depot使用Analytics Zoo构建智能推荐系统的实践经验。有兴趣的同学,可以提前关注此开源项目:
https://github.com/intel-analytics/analytics-zoo
3.26 intel直播.png

相关实践学习
基于EMR Serverless StarRocks一键玩转世界杯
基于StarRocks构建极速统一OLAP平台
快速掌握阿里云 E-MapReduce
E-MapReduce 是构建于阿里云 ECS 弹性虚拟机之上,利用开源大数据生态系统,包括 Hadoop、Spark、HBase,为用户提供集群、作业、数据等管理的一站式大数据处理分析服务。 本课程主要介绍阿里云 E-MapReduce 的使用方法。
相关文章
|
1月前
|
机器学习/深度学习 数据采集 搜索推荐
使用Python实现智能食品推荐系统的深度学习模型
使用Python实现智能食品推荐系统的深度学习模型
80 2
|
1月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
110 2
|
1月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
74 1
|
2月前
|
机器学习/深度学习 搜索推荐 TensorFlow
使用Python实现智能电子商务推荐系统:深度学习模型详解
使用Python实现智能电子商务推荐系统:深度学习模型详解
221 4
|
3月前
|
分布式计算 Java Apache
Apache Spark Streaming技术深度解析
【9月更文挑战第4天】Apache Spark Streaming是Apache Spark生态系统中用于处理实时数据流的一个重要组件。它将输入数据分成小批次(micro-batch),然后利用Spark的批处理引擎进行处理,从而结合了批处理和流处理的优点。这种处理方式使得Spark Streaming既能够保持高吞吐量,又能够处理实时数据流。
76 0
|
4月前
|
C# 开发者 Windows
WPF遇上Office:一场关于Word与Excel自动化操作的技术盛宴,从环境搭建到代码实战,看WPF如何玩转文档处理的那些事儿
【8月更文挑战第31天】Windows Presentation Foundation (WPF) 是 .NET Framework 的重要组件,以其强大的图形界面和灵活的数据绑定功能著称。本文通过具体示例代码,介绍如何在 WPF 应用中实现 Word 和 Excel 文档的自动化操作,包括文档的读取、编辑和保存等。首先创建 WPF 项目并设计用户界面,然后在 `MainWindow.xaml.cs` 中编写逻辑代码,利用 `Microsoft.Office.Interop` 命名空间实现 Office 文档的自动化处理。文章还提供了注意事项,帮助开发者避免常见问题。
301 0
|
4月前
|
存储 分布式计算 资源调度
Hadoop生态系统概览:从HDFS到Spark
【8月更文第28天】Hadoop是一个开源软件框架,用于分布式存储和处理大规模数据集。它由多个组件构成,旨在提供高可靠性、高可扩展性和成本效益的数据处理解决方案。本文将介绍Hadoop的核心组件,包括HDFS、MapReduce、YARN,并探讨它们如何与现代大数据处理工具如Spark集成。
338 0
|
5月前
|
分布式计算 大数据 Spark
Spark大数据处理:技术、应用与性能优化(全)PDF书籍推荐分享
《Spark大数据处理:技术、应用与性能优化》深入浅出介绍Spark核心,涵盖部署、实战与性能调优,适合初学者。作者基于微软和IBM经验,解析Spark工作机制,探讨BDAS生态,提供实践案例,助力快速掌握。书中亦讨论性能优化策略。[PDF下载链接](https://zhangfeidezhu.com/?p=347)。![Spark Web UI](https://img-blog.csdnimg.cn/direct/16aaadbb4e13410f8cb2727c3786cc9e.png#pic_center)
163 1
Spark大数据处理:技术、应用与性能优化(全)PDF书籍推荐分享
|
4月前
|
分布式计算 Java Linux
【Deepin 20系统】Linux 系统安装Spark教程及使用
在Deepin 20系统上安装和使用Apache Spark的详细教程,包括安装Java JDK、下载和解压Spark安装包、配置环境变量和Spark配置文件、启动和关闭Spark集群的步骤,以及使用Spark Shell和PySpark进行简单操作的示例。
85 0
|
5月前
|
机器学习/深度学习 搜索推荐 算法
智能推荐系统:个性化体验的背后
【7月更文第18天】在互联网的汪洋大海中,智能推荐系统就像一位贴心的向导,总能在浩瀚的信息中找到你最感兴趣的那一部分。它在电商平台上让你轻松发现心仪商品,在视频平台上为你连播下一集你欲罢不能的剧集。这背后的秘密,就是那些神奇的智能推荐算法。今天,咱们就来扒一扒电商、视频平台中的智能推荐系统,看看它是如何为你我打造出个性化的数字体验的。
300 0
下一篇
DataWorks