数据库必知词汇:Hadoop-阿里云开发者社区

开发者社区> 阿里云术语库> 正文
登录阅读全文

数据库必知词汇:Hadoop

简介: Apache Hadoop是一个由Apache基金会所开发的分布式系统基础架构,它允许使用简单的编程模型跨计算机集群对大型数据集进行分布式处理。它被设计成从单个服务器扩展到数千台机器,每台机器都提供本地计算和存储。库本身的设计目的是在应用层检测和处理故障,而不是依赖硬件来提供高可用性,因此在计算机集群之上提供高可用性服务,而每个集群都可能容易出现故障。

Apache Hadoop是一个由Apache基金会所开发的分布式系统基础架构,它允许使用简单的编程模型跨计算机集群对大型数据集进行分布式处理。它被设计成从单个服务器扩展到数千台机器,每台机器都提供本地计算和存储。库本身的设计目的是在应用层检测和处理故障,而不是依赖硬件来提供高可用性,因此在计算机集群之上提供高可用性服务,而每个集群都可能容易出现故障。

Hadoop原本来自于谷歌一款名为MapReduce的编程模型包。谷歌的MapReduce框架可以把一个应用程序分解为许多并行计算指令,跨大量的计算节点运行非常巨大的数据集。使用该框架的一个典型例子就是在网络数据上运行的搜索算法。Hadoop最初只与网页索引有关,迅速发展成为分析大数据的领先平台。

用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。Hadoop的框架最核心的设计就是:HDFS和MapReduce。HDFS为海量的数据提供了存储,而MapReduce则为海量的数据提供了计算。

Hadoop实现的分布式文件系统(Hadoop Distributed File System),简称HDFS。HDFS有高容错性的特点,并且设计用来部署在低廉的硬件上;而且它提供高吞吐量来访问应用程序的数据,适合那些有着超大数据集的应用程序。HDFS放宽了POSIX的要求,可以以流的形式访问文件系统中的数据。

Hadoop是一个能够让用户轻松架构和使用的分布式计算平台。用户可以轻松地在Hadoop上开发和运行处理海量数据的应用程序。它主要有以下几个优点:
1.高可靠性。Hadoop按位存储和处理数据的能力值得人们信赖。
2.高扩展性。Hadoop是在可用的计算机集簇间分配数据并完成计算任务的,这些集簇可以方便地扩展到数以千计的节点中。
3.高效性。Hadoop能够在节点之间动态地移动数据,并保证各个节点的动态平衡,因此处理速度非常快。
4.高容错性。Hadoop能够自动保存数据的多个副本,并且能够自动将失败的任务重新分配。
5.低成本。与一体机、商用数据仓库以及QlikView、Yonghong Z-Suite等数据集市相比,Hadoop是开源的,项目的软件成本因此会大大降低。

Hadoop得以在大数据处理应用中广泛应用得益于其自身在数据提取、变形和加载(ETL)方面上的天然优势。Hadoop的分布式架构,将大数据处理引擎尽可能的靠近存储,对例如像ETL这样的批处理操作相对合适,因为类似这样操作的批处理结果可以直接走向存储。Hadoop的MapReduce功能实现了将单个任务打碎,并将碎片任务(Map)发送到多个节点上,之后再以单个数据集的形式加载(Reduce)到数据仓库里。

Hadoop 由许多元素构成。其最底部是 Hadoop Distributed File System(HDFS),它存储 Hadoop 集群中所有存储节点上的文件。HDFS的上一层是MapReduce 引擎,该引擎由 JobTrackers 和 TaskTrackers 组成。通过对Hadoop分布式计算平台最核心的分布式文件系统HDFS、MapReduce处理过程,以及数据仓库工具Hive和分布式数据库Hbase的介绍,基本涵盖了Hadoop分布式平台的所有技术核心。

资料来源:
1.Apache Hadoop http://hadoop.apache.org/
2.秦婷,张长华主编;王伯爵,沈海龙,纪善国副主编,云计算技术项目教程,知识产权出版社,2016.12
3.杨旭,汤海京,丁刚毅编著,数据科学导论 第2版,北京理工大学出版社,2017.01
4.一分钟让你知道Hadoop是什么 https://blog.csdn.net/dashujvyu/article/details/89843860
5.Joe Austin.Dataguise Enhances DG for Hadoop with Selective Encryption to Enable Secure, High-Performance Analytics for Hadoop Users:网络出版,2013年
6.陈吉荣, 乐嘉锦. 基于Hadoop生态系统的大数据解决方案综述[J]. 计算机工程与科学, 2013, 35(10):25-35.
大话Hadoop MapReduce https://searchdatabase.techtarget.com.cn/microsite/7-22750/

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

分享:

阿里云术语库提供术语的标准定义、缩略语、术语用法及多语言等,提供术语的增删改查等功能。

官方博客
最新文章
相关文章
官网链接