Kubernetes 中日志的正确输出姿势

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
日志服务 SLS,月写入数据量 50GB 1个月
全局流量管理 GTM,标准版 1个月
简介: 本文我们将从实践角度出发来一步步构建K8s中的日志监控体系。构建日志系统的第一步是如何去产生这些日志,而这也往往是最繁杂最困难的一步。

1579579315780-7225ce4d-97e1-4408-b27e-08fdec13cd3b.png
镜像下载、域名解析、时间同步请点击 阿里巴巴开源镜像站

作者:元乙

一、Kubernetes 日志等级选择 

日志等级是用来区分日志对应事件严重程度的说明,这是所有日志中必须具备的一个选项。通常日志会分为6个不同的等级:

  • FATAL(致命):用来输出非常严重或预期中不会发生的错误,遇到此种错误应当立即报警并人工介入处理。
  • ERROR (错误):非预期中的错误,此种错误可能导致部分系统异常但不会影响核心业务和系统正常运行。
  • WARN(警告):潜在的危险或值得关注的信息(比较核心的路径)。
  • INFO(信息):应用执行过程中的详细信息,一般通过该信息可以看到每个请求的主要执行过程。
  • DEBUG(调试):用于线下调试的日志信息,用于分析应用执行逻辑,线上应用切勿开启。
  • TRACE(跟踪):输出最细致的运行轨迹,可能包含涉及的数据内容。

作为程序员,一定要合理设置日志等级,个人在开发过程中总结以下几点经验:

  1. FATAL类型日志一定是非常严重的错误、需要人工处理的场景打印的。
  2. ERROR和WARNING的区别很多程序员难以选择,可以从告警角度考虑:ERROR一般需要告警,WARNING不需要。
  3. 日志等级一方面是为了能够表示日志的严重程度,另一方面也是为了控制应用程序的日志输出量,通常线上只能打开INFO或WARN的日志。
  4. DEBUG日志可以多打,方便分析问题。
  5. 所有用户请求日志,必须记录。
  6. 对于不确定的外部系统调用,日志需尽可能覆盖周全。
  7. 程序中的日志库需要具备运行期间变更日志等级的能力,方便在遇到问题需要分析时临时更改日志等级。
  8. 通常在新功能上线,涉及的日志可适当提升一个等级,方便实时观察和监控,待稳定后再调整到正常(记得加上注释,方便改回来)。

二、日志内容规范

通常在没有约束的情况下,程序员的发挥天马行空,各种日志内容都会出现,这些只有开发自己才能看懂的日志很难进行分析和告警。因此我们需要一个日志顶向下的规范来约束项目中的开发人员,让所有的日志看起来是一个人打印的而且是易于分析的。

2.1 日志的字段

日志中通常必备的字段有:Time、Level、Location。对于特定模块/流程/业务,还需要有一些Common的字段,例如:

  1. 如果使用Trace系统,可以把TraceID附加到日志中。
  2. 固定的流程需要附加对应的字段,例如订单的生命周期中,一定要有订单号、用户ID等信息,这些信息可以通过Context附加到对应流程的日志实例上。
  3. HTTP请求需要记录:URL、Method、Status、Latency、Inflow、OutFlow、ClientIP、UserAgent等,详情可以参考Nginx日志格式
  4. 如果多个模块的日志都打印到同一个流/文件中,必须有字段标识模块名。

日志的字段规约最好由运维平台/中间件平台自顶向下推动,约束每个模块/流程的程序员按照规定打印日志。

2.2 日志表现形式

通常我们建议使用KeyValue对形式的日志格式,比如我们阿里的飞天日志库采用的就是这种形式:

[2019-12-30 21:45:30.611992]    [WARNING]       [958] [block_writer.cpp:671]  path:pangu://localcluster/index/3/prom/7/1577711464522767696_0_1577711517     min_time:1577712000000000       max_time:1577715600000000       normal_count:27595      config:prom     start_line:57315569     end_line:57343195       latency(ms):42  type:AddBlock

KeyValue对的日志可以完全自解析且易于理解,同时便于日志采集时自动解析。
另外推荐的是JSON日志格式,支持以JSON格式输出的日志库很多,而且大部分的日志采集Agent都支持JSON格式的日志收集。

{"addr":"tcp://0.0.0.0:10010","caller":"main.go:98","err":"listen tcp: address tcp://0.0.0.0:10010: too many colons in address","level":"error","msg":"Failed to listen","ts":"2019-03-08T10:02:47.469421Z"}
  • 注意:绝大部分场景不建议使用非可读的日志格式(例如ProtoBuf、Binlog等)。

2.3 单条日志换行问题

非必要情况下,尽量不要一条日志输出成多行,这种对于采集、解析和索引的代价都比较高。

三、日志输出

3.1 合理控制日志输出量

日志的输出量直接影响到磁盘使用以及对于应用的性能消耗,日志太多也不利于查看、采集、分析;日志太少不利于监控,同时在出现问题的时候没办法调查。一般线上应用需合理控制日志的数据量:

  1. 服务入口的请求和响应日志没有特殊原因都要输出并采集,采集的字段可以根据需求调整。
  2. 错误日志一般都要打印,如果太多,可以使用采样方式打印。
  3. 减少无效日志输出,尤其是循环中打印日志的情况需尽量减少。
  4. 请求型的日志(比如Ingress、Nginx访问日志)一般不超过5MB/s(500字节每条,不超过1W/s),应用程序日志不超过200KB/s(2KB每条,不超过100条/s)。

3.2 选择多种日志输出目标

建议一个应用不同类型的日志输出到不同的目标(文件),这样便于分类采集、查看和监控。例如:

  1. 访问日志单独放到一个文件,如果域名不多,可以按照一个域名一个文件的形式。
  2. 错误类的日志单独放一个文件,单独配置监控告警。
  3. 调用外部系统的日志单独放一个文件,便于后续对账、审计。
  4. 中间件通常都由统一的平台提供,日志一般单独打印一个文件。

3.3 控制日志性能消耗

日志作为业务系统的辅助模块,一定不能影响到业务正常的工作,因此日志模块的性能消耗需要单独额外注意,一般在选择/开发日志库时,需要对日志库进行性能测试,确保正常情况下日志的性能消耗不超过整体CPU占用的5%。

  • 注意:一定要确保日志打印是异步的,不能阻塞业务系统运行。

3.4 如何选择日志库

开源的日志库非常多,基本每个语言都有数十种,选择一个符合公司/业务需求的日志库需要精挑细选,有一个简单的指导原则是尽可能使用比较流行的日志库的稳定版本,入坑的几率要小一点。例如:

  1. Java 使用 Log4J、LogBack。
  2. Golang 使用 go-kit
  3. Python默认集成的日志库大部分场景都够用,建议阅读一下CookBook
  4. C++ 推荐使用 spdlog,高性能、跨平台。

3.5 日志形态选择

在虚拟机/物理机的场景中,绝大部分应用都以文件的形式输出日志(只有一些系统应用输出到syslog/journal);而在容器场景中,多了一个标准输出的方式,应用把日志打到stdout或stderr上,日志会自动进入到docker的日志模块,可以通过 docker logs 或 kubectl logs 直接查看。
容器的标准输出只适应于比较单一的应用,例如K8s中的一些系统组件,线上的服务类应用通常都会涉及到多个层级(中间件)、和各种服务交互,一般日志都会分为好几类,如果全部打印到容器的标准输出,很难区分处理。
同时容器标准输出对于DockerEngine的性能消耗特别大,实测10W/s的日志量会额外占用DockerEngine 1个核心的CPU(单核100%)。

3.6 日志是否落盘以及落盘介质

在Kubernetes中,还可以将日志库直接对接日志系统,日志打印的时候不落盘而直接传输到日志系统后端。这种使用方式免去了日志落盘、Agent采集的过程,整体性能会高很多。这种方式我们一般只建议日志量极大的场景使用,普通情况下还是直接落盘,相比直接发送到后端的方式,落盘增加了一层文件缓存,在网络失败的情况下还能缓存一定的数据,在日志系统不可用的情况下我们的研发运维同学可以直接查看文件的日志,提高整体的可靠性。
Kubernetes提供了多种存储方式,一般在云上,都会提供本地存储、远程文件存储、对象存储等方式。由于日志写入的QPS很高,和应用也直接相关,如果使用远程类型的存储,会额外多2-3次网络通信开销。我们一般建议使用本地存储的方式,可以使用HostVolume或者EmptyDir的方式,这样对于写入和采集的性能影响会尽可能的小。

3.7 如何保证日志存储周期

相比传统虚拟机/物理机的场景,Kubernetes对于节点、应用层提供了强大的调度、容错、缩/扩容能力,我们通过Kubernetes很容易就能让应用获得高可靠运行、极致弹性。这些优势带来的一个现象是:节点动态创建/删除、容器动态创建/删除,这样日志也会随时销毁,没办法保证日志的存储周期能够满足DevOps、审计等相关的需求。
在动态的环境下实现日志的长期存储只能通过中心化的日志存储来实现,通过实时的日志采集方式,将各个节点、各个容器的日志在秒级内采集到日志中心系统上,即使节点/容器挂掉也能够通过日志还原当时的现场。

四、总结

日志输出是日志系统建设中非常重要的环节,公司/产品线一定要遵循一个统一的日志规范,这样才能保证后续日志采集、分析、监控、可视化能够顺利进行。

阿里巴巴开源镜像站 提供全面,高效和稳定的系统镜像、应用软件下载、域名解析和时间同步服务。”

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
5月前
|
Kubernetes Ubuntu Windows
【Azure K8S | AKS】分享从AKS集群的Node中查看日志的方法(/var/log)
【Azure K8S | AKS】分享从AKS集群的Node中查看日志的方法(/var/log)
150 3
|
4月前
|
Kubernetes API Docker
跟着iLogtail学习容器运行时与K8s下日志采集方案
iLogtail 作为开源可观测数据采集器,对 Kubernetes 环境下日志采集有着非常好的支持,本文跟随 iLogtail 的脚步,了解容器运行时与 K8s 下日志数据采集原理。
|
5月前
|
消息中间件 Kubernetes API
在K8S中,如何收集k8s集群日志?
在K8S中,如何收集k8s集群日志?
|
5月前
|
存储 Kubernetes 数据可视化
在k8S中,如何使用EFK实现日志的统 一管理?
在k8S中,如何使用EFK实现日志的统 一管理?
|
5月前
|
存储 Kubernetes 容器
在k8S中,如何查看一个Pod最近20分钟日志?
在k8S中,如何查看一个Pod最近20分钟日志?
|
5月前
|
Kubernetes Java 索引
Elasticsearch on K8S 开启慢日志
本文档指导如何在Elasticsearch on PaaS环境中手动配置慢日志。首先通过API设置索引的慢日志阈值,接着创建`log4j2.properties`的ConfigMap以定义日志滚动策略,并修改Elasticsearch配置引入此ConfigMap。最后,通过Kubernetes命令检查Pod内的`logs`目录以查看生成的慢日志文件。需注意,不当配置可能会影响系统性能。[官方文档](https://www.elastic.co/guide/en/elasticsearch/reference/6.8/logging.html)提供更多细节。
165 3
|
5月前
|
存储 Kubernetes 网络安全
[k8s]使用nfs挂载pod的应用日志文件
[k8s]使用nfs挂载pod的应用日志文件
197 1
|
4月前
|
运维 Kubernetes 监控
Loki+Promtail+Grafana监控K8s日志
综上,Loki+Promtail+Grafana 监控组合对于在 K8s 环境中优化日志管理至关重要,它不仅提供了强大且易于扩展的日志收集与汇总工具,还有可视化这些日志的能力。通过有效地使用这套工具,可以显著地提高对应用的运维监控能力和故障诊断效率。
451 0
|
5月前
|
消息中间件 Kubernetes Kafka
微服务从代码到k8s部署应有尽有系列(十一、日志收集)
微服务从代码到k8s部署应有尽有系列(十一、日志收集)
|
5月前
|
Kubernetes Shell 网络安全
【Azure K8S】记录AKS VMSS实例日志收集方式
【Azure K8S】记录AKS VMSS实例日志收集方式

热门文章

最新文章