微服务从代码到k8s部署应有尽有系列(十一、日志收集)

本文涉及的产品
任务调度 XXL-JOB 版免费试用,400 元额度,开发版规格
Elasticsearch Serverless通用抵扣包,测试体验金 200元
注册配置 MSE Nacos/ZooKeeper,182元/月
简介: 微服务从代码到k8s部署应有尽有系列(十一、日志收集)

我们用一个系列来讲解从需求到上线、从代码到k8s部署、从日志到监控等各个方面的微服务完整实践。

整个项目使用了go-zero开发的微服务,基本包含了go-zero以及相关go-zero作者开发的一些中间件,所用到的技术栈基本是go-zero项目组的自研组件,基本是go-zero全家桶了。

实战项目地址:https://github.com/Mikaelemmmm/go-zero-looklook

序言

在介绍之前,我先说一下整体思路,如果你的业务日志量不是特别大恰好你又使用的是云服务,那你直接使用云服务日志就可以了,比如阿里云的SLS,基本就是点点鼠标配置几步就可以将你的日志收集到阿里云的SLS里面了,直接就可以在阿里云中查看收集上来的日志了,感觉也没必要折腾。

如果你的日志量比较大,那就可以上日志系统了。

1、日志系统

我们将业务日志打印到console、file之后,市面上比较常用的方式是elk、efk等基本思路一样,我们拿常说的elk来举例,基本思路就是logstash收集过滤到elasticsearch中,然后kibana呈现

但是logstash本身是使用java开发的,占用资源是真滴高,我们用go做业务,本身除了快就是占用资源少构建块,现在在搞个logstash浪费资源,那我们使用go-stash替代logstash,go-stash是go-zero官方自己开发的并且在线上经过长期大量实践的,但是它不负责收集日志,只负责过滤收集上来信息。

go-stash: https://github.com/kevwan/go-stash

2、架构方案

filebeat收集我们的业务日志,然后将日志输出到kafka中作为缓冲,go-stash获取kafka中日志根据配置过滤字段,然后将过滤后的字段输出到elasticsearch中,最后由kibana负责呈现日志

3、实现方案

在上一节错误处理中,我们可以看到已经将我们想要的错误日志打印到了console控制台中了,现在我们只需要做后续收集即可

3.1 kafka

#消息队列
kafka:
  image: wurstmeister/kafka
  container_name: kafka
  ports:
    - 9092:9092
  environment:
    KAFKA_ADVERTISED_HOST_NAME: kafka
    KAFKA_ZOOKEEPER_CONNECT: zookeeper:2181
    TZ: Asia/Shanghai
  restart: always
  volumes:
    - /var/run/docker.sock:/var/run/docker.sock
  networks:
    - looklook_net
  depends_on:
    - zookeeper

先配置好kafka、zookeeper

然后我们进入kafka中先创建好filebeat收集日志到kafka的topic

进入kafka容器

$  docker exec -it kafka /bin/sh

修改kafka监听配置(或者你把配置文件挂载到物理机在修改也可以)

$ vi /opt/kafka/config/server.properties
listeners=PLAINTEXT://kafka:9092 # 原文件中,要加kafka listeners=PLAINTEXT://:9092
advertised.listeners=PLAINTEXT://kafka:9092 #源文件中,要加kafka advertised.listeners=PLAINTEXT://:9092

创建topic

$  cd /opt/kafka/bin
$ ./kafka-topics.sh --create --zookeeper zookeeper:2181 --replication-factor 1 -partitions 1 --topic looklook-log

3.2 filebeat

在项目根目录下 docker-compose-env.yml文件中可以看到我们配置了filebeat

filebeat的配置我们挂载到 deploy/filebeat/conf/filebeat.yml

filebeat.inputs:
  - type: log
    enabled: true
    paths:
      - /var/lib/docker/containers/*/*-json.log
filebeat.config:
  modules:
    path: ${path.config}/modules.d/*.yml
    reload.enabled: false
processors:
  - add_cloud_metadata: ~
  - add_docker_metadata: ~
output.kafka:
  enabled: true
  hosts: ["kafka:9092"]
  #要提前创建topic
  topic: "looklook-log"
  partition.hash:
    reachable_only: true
  compression: gzip
  max_message_bytes: 1000000
  required_acks: 1

配置比较简单,可以看到我们收集所有日志直接 输出到我们配置的kafka中 , topic配置上一步kafka中创建的topic即可

3.3 配置go-stash

我们来看下go-stash的配置文件 deploy/go-stash/etc/config.yaml

Clusters:
  - Input:
      Kafka:
        Name: gostash
        Brokers:
          - "kafka:9092"
        Topics:
          - looklook-log
        Group: pro
        Consumers: 16
    Filters:
      - Action: drop
        Conditions:
          - Key: k8s_container_name
            Value: "-rpc"
            Type: contains
          - Key: level
            Value: info
            Type: match
            Op: and
      - Action: remove_field
        Fields:
          # - message
          - _source
          - _type
          - _score
          - _id
          - "@version"
          - topic
          - index
          - beat
          - docker_container
          - offset
          - prospector
          - source
          - stream
          - "@metadata"
      - Action: transfer
        Field: message
        Target: data
    Output:
      ElasticSearch:
        Hosts:
          - "http://elasticsearch:9200"
        Index: "looklook-{{yyyy-MM-dd}}"

配置消费的kafka以及输出的elasticsearch , 以及要过滤的字段等

3.4 elastic search、kibana

访问kibana http://127.0.0.1:5601/ , 创建日志索引

点击左上角菜单(三个横线那个东东),找到Analytics - > 点击discover

然后在当前页面,Create index pattern->输入looklook-*  -> Next Step ->选择@timestamp->Create index pattern

然后点击左上角菜单,找到Analytics->点击discover ,稍等一会,日志都显示了 (如果不显示,就去排查filebeat、go-stash,使用docker logs -f filebeat查看)

我们在代码中添加一个错误日志尝试一下,代码如下

func (l *BusinessListLogic) BusinessList(req types.BusinessListReq) (*types.BusinessListResp, error) {
 logx.Error("测试的日志")
 ...
}

我们访问这个业务方法,去kibana中搜索 data.log : "测试",如下图

4、结尾

到此日志收集就完成了,接下来我们要实现链路追踪

项目地址

https://github.com/zeromicro/go-zero

相关文章
|
18天前
|
jenkins Java 持续交付
使用 Jenkins 和 Spring Cloud 自动化微服务部署
随着单体应用逐渐被微服务架构取代,企业对快速发布、可扩展性和高可用性的需求日益增长。Jenkins 作为领先的持续集成与部署工具,结合 Spring Cloud 提供的云原生解决方案,能够有效简化微服务的开发、测试与部署流程。本文介绍了如何通过 Jenkins 实现微服务的自动化构建与部署,并结合 Spring Cloud 的配置管理、服务发现等功能,打造高效、稳定的微服务交付流程。
使用 Jenkins 和 Spring Cloud 自动化微服务部署
|
6月前
|
存储 Kubernetes 开发工具
使用ArgoCD管理Kubernetes部署指南
ArgoCD 是一款基于 Kubernetes 的声明式 GitOps 持续交付工具,通过自动同步 Git 存储库中的配置与 Kubernetes 集群状态,确保一致性与可靠性。它支持实时同步、声明式设置、自动修复和丰富的用户界面,极大简化了复杂应用的部署管理。结合 Helm Charts,ArgoCD 提供模块化、可重用的部署流程,显著减少人工开销和配置错误。对于云原生企业,ArgoCD 能优化部署策略,提升效率与安全性,是实现自动化与一致性的理想选择。
327 0
|
2月前
|
存储 监控 Shell
SkyWalking微服务监控部署与优化全攻略
综上所述,虽然SkyWalking的初始部署流程相对复杂,但通过一步步的准备和配置,可以充分发挥其作为可观测平台的强大功能,实现对微服务架构的高效监控和治理。尽管未亲临,心已向往。将一件事做到极致,便是天分的展现。
|
5月前
|
存储 Kubernetes 异构计算
Qwen3 大模型在阿里云容器服务上的极简部署教程
通义千问 Qwen3 是 Qwen 系列最新推出的首个混合推理模型,其在代码、数学、通用能力等基准测试中,与 DeepSeek-R1、o1、o3-mini、Grok-3 和 Gemini-2.5-Pro 等顶级模型相比,表现出极具竞争力的结果。
|
4月前
|
人工智能 搜索推荐 前端开发
从代码到心灵对话:我的CodeBuddy升级体验之旅(个性化推荐微服务系统)
本文分享了使用CodeBuddy最新版本的深度体验,重点探讨了Craft智能体、MCP协议和DeepSeek V3三大功能。Craft实现从对话到代码的无缝转化,大幅提升开发效率;MCP协议打通全流程开发,促进团队协作;DeepSeek V3则将代码补全提升至新境界,显著减少Bug并优化跨语言开发。这些功能共同塑造了AI与程序员共生的未来模式,让编程更高效、自然。
422 15
|
6月前
|
存储 Kubernetes 监控
K8s集群实战:使用kubeadm和kuboard部署Kubernetes集群
总之,使用kubeadm和kuboard部署K8s集群就像回归童年一样,简单又有趣。不要忘记,技术是为人服务的,用K8s集群操控云端资源,我们不过是想在复杂的世界找寻简单。尽管部署过程可能遇到困难,但朝着简化复杂的目标,我们就能找到意义和乐趣。希望你也能利用这些工具,找到你的乐趣,满足你的需求。
630 33
|
6月前
|
Kubernetes 开发者 Docker
集群部署:使用Rancher部署Kubernetes集群。
以上就是使用 Rancher 部署 Kubernetes 集群的流程。使用 Rancher 和 Kubernetes,开发者可以受益于灵活性和可扩展性,允许他们在多种环境中运行多种应用,同时利用自动化工具使工作负载更加高效。
364 19
|
6月前
|
存储 测试技术 对象存储
使用容器服务ACK快速部署QwQ-32B模型并实现推理智能路由
阿里云最新发布的QwQ-32B模型,通过强化学习大幅度提升了模型推理能力。QwQ-32B模型拥有320亿参数,其性能可以与DeepSeek-R1 671B媲美。
|
7月前
|
存储 Kubernetes 测试技术
企业级LLM推理部署新范式:基于ACK的DeepSeek蒸馏模型生产环境落地指南
企业级LLM推理部署新范式:基于ACK的DeepSeek蒸馏模型生产环境落地指南
315 12
|
7月前
|
人工智能 Kubernetes 异构计算
大道至简-基于ACK的Deepseek满血版分布式推理部署实战
大道至简-基于ACK的Deepseek满血版分布式推理部署实战
396 5

推荐镜像

更多