如何使用AnalyticDB for PostgreSQL 6.0 进行TPC-H 1TB数据的测试

本文涉及的产品
RDS PostgreSQL Serverless,0.5-4RCU 50GB 3个月
推荐场景:
对影评进行热评分析
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: TPC-H 主要目的是评价特定查询的决策支持能力,该基准模拟了决策支持系统中的数据库操作,测试数据库系统复杂查询的响应时间。本文详细介绍了在阿里云AnalyticDB for PostgreSQL 6.0版,测试TPC-H benchmark 1TB数据的流程和测试结果

TPC-H 简介

TPC-H是事务处理性能委员会( Transaction ProcessingPerformance Council )制定的基准程序之一,TPC-H 主要目的是评价特定查询的决策支持能力,该基准模拟了决策支持系统中的数据库操作,测试数据库系统复杂查询的响应时间。
TPC-H 里的表是模拟一个配件销售管理系统进行建模。详情参考 TPCH Specification

8张表逻辑关系

tpch_

测试数据量的说明

数据量的大小对查询速度有直接的影响,TPC-H 中使用SF描述数据量,1SF 对应1GB 单位。1000SF,即1TB。1SF对应的数据量只是8个表的总数据量不包括索引等空间占用,准备数据时需预留更多空间。

AnalyticDB for PostgreSQL 6.0 规格选择

选择性价比适中的两种规格:
• ADB PG 6.0 SSD存储+单节点1核+实例节点数64
• ADB PG 6.0 SSD存储+单节点4核+实例节点数32
• 后续的测试过程均使用默认配置,未针对TPC-H的查询SQL做特别的修改

测试步骤

开通一个ECS实例

准备一台ECS(建议规格:ecs.g6.4xlarge规格、CentOS系统、ESSD 2T数据盘,建议与AnalyticDB for PostgreSQL 6.0 实例用相同region和VPC网络),用于1T数据生成、数据上传/入库、客户端测试。

开通一个AnalyticDB for PostgreSQL 6.0 实例

参考配置如下图。建议与ECS实例用相同区域和VPC网络。adbpg_

开通外网,修改白名单,创建数据库账号

进入阿里云分析型数据库PostgreSQL产品页,进入分析型数据库PostgreSQL版控制台,找到已开通的AnalyticDB for PostgreSQL 6.0 实例,点击“实例名链接”进入详情页,参考下图位置,修改配置项。_

生成TPC-H 1T数据

  • SSH进入到ECS实例,下载TPC-H dbgen代码,编译后dbgen目录生成 dbgen/qgen 执行程序。
git clone https://github.com/gregrahn/tpch-kit.git
cd tpch-kit/dbgen
make
  • 生成1T数据,运行 ./dbgen --help 查看如何生成,命令参考:
    ./dbgen -vf -s 1000
  • 也可以并行生成分片文件,如下shell脚本参考(10个分片文件):
for((i=1;i<=10;i++));
do
./dbgen -s 1000 -S $i -C 10 -f &
done
  • 处理生成的 tbl 文件,tbl文件每行最后会多1个'|',可以用seed命令将每行后面的'|'去掉,shell脚本参考:
sed -i 's/.$//' ./region.tbl &
sed -i 's/.$//' ./nation.tbl &
for((i=1;i<=10;i++));
do
sed -i 's/.$//' ./lineitem.tbl.$i &
sed -i 's/.$//' ./orders.tbl.$i &
sed -i 's/.$//' ./customer.tbl.$i &
sed -i 's/.$//' ./partsupp.tbl.$i &
sed -i 's/.$//' ./part.tbl.$i &
sed -i 's/.$//' ./supplier.tbl.$i &
done

向数据库中建表

在ECS机器上检查是否存在PSQL命令,如果没有,安装PSQL客户端:
sudo yum install postgresql

准备TPC-H涉及到的8张表创建SQL,建表语句参考如下。
列存表适合向量计算、JIT架构。对大批量数据的访问和统计,效率更高。因此建表语句中使用了
• AO列存表
• 不开压缩
• 设置复制表

create table nation (
    n_nationkey  integer not null,
    n_name       char(25) not null,
    n_regionkey  integer not null,
    n_comment    varchar(152)
)
with (appendonly=true, orientation=column)
distributed REPLICATED;
create table region (
    r_regionkey  integer not null,
    r_name       char(25) not null,
    r_comment    varchar(152)
)
with (appendonly=true, orientation=column)
distributed REPLICATED;
create table part (
    p_partkey     integer not null,
    p_name        varchar(55) not null,
    p_mfgr        char(25) not null,
    p_brand       char(10) not null,
    p_type        varchar(25) not null,
    p_size        integer not null,
    p_container   char(10) not null,
    p_retailprice DECIMAL(15,2) not null,
    p_comment     varchar(23) not null
)
with (appendonly=true, orientation=column)
distributed by (p_partkey);
create table supplier (
    s_suppkey     integer not null,
    s_name        char(25) not null,
    s_address     varchar(40) not null,
    s_nationkey   integer not null,
    s_phone       char(15) not null,
    s_acctbal     DECIMAL(15,2) not null,
    s_comment     varchar(101) not null
)
with (appendonly=true, orientation=column)
distributed by (s_suppkey);
create table partsupp (
    ps_partkey     integer not null,
    ps_suppkey     integer not null,
    ps_availqty    integer not null,
    ps_supplycost  DECIMAL(15,2)  not null,
    ps_comment     varchar(199) not null
)
with (appendonly=true, orientation=column)
distributed by (ps_partkey);
create table customer (
    c_custkey     integer not null,
    c_name        varchar(25) not null,
    c_address     varchar(40) not null,
    c_nationkey   integer not null,
    c_phone       char(15) not null,
    c_acctbal     DECIMAL(15,2)  not null,
    c_mktsegment  char(10) not null,
    c_comment     varchar(117) not null
)
with (appendonly=true, orientation=column)
distributed by (c_custkey);
create table orders (
    o_orderkey       bigint not null,
    o_custkey        integer not null,
    o_orderstatus    char(1) not null,
    o_totalprice     DECIMAL(15,2) not null,
    o_orderdate      date not null,
    o_orderpriority  char(15) not null,
    o_clerk          char(15) not null,
    o_shippriority   integer not null,
    o_comment        varchar(79) not null
)
with (appendonly=true, orientation=column)
distributed by (o_orderkey);
create table lineitem (
    l_orderkey    bigint not null,
    l_partkey     integer not null,
    l_suppkey     integer not null,
    l_linenumber  integer not null,
    l_quantity    DECIMAL(15,2) not null,
    l_extendedprice  DECIMAL(15,2) not null,
    l_discount    DECIMAL(15,2) not null,
    l_tax         DECIMAL(15,2) not null,
    l_returnflag  char(1) not null,
    l_linestatus  char(1) not null,
    l_shipdate    date not null,
    l_commitdate  date not null,
    l_receiptdate date not null,
    l_shipinstruct char(25) not null,
    l_shipmode     char(10) not null,
    l_comment      varchar(44) not null
)
with (appendonly=true, orientation=column)
distributed by (l_orderkey);

运行SQL脚本文件的shell脚本参考:

export PGPASSWORD=<数据库账号密码>
psql -h <ADB PG实例内网或外网地址> -p 3432 -U <数据库账号> -f <创建表的SQL脚本文件路径> 

导入数据

准备工作就绪,可以开始导入数据了,导入数据有两种方式:

  1. 通过 copy from导入
  2. 通过OSS外表方式导入

下面分别介绍两种导入方法

COPY方式导入

SQL脚本参考:

\copy nation from '/data/tpch_1t/nation.tbl' DELIMITER '|';
\copy region from '/data/tpch_1t/region.tbl' DELIMITER '|';
\copy supplier from '/data/tpch_1t/supplier.tbl' DELIMITER '|';

tbl路径以实际路径为准,导入shell脚本参考创建表的shell脚本(或psql进入数据库执行)。为提高导入效率(ECS网络带宽保障),可以把SQL拆开并发导入。

使用OSS外表方式导入数据

将生成的数据文件上传到oss

./ossutil64 cp -r <tbl文件目录> oss://<oss bucket>/<目录>/ 
               -i <AccessKey ID> -k <Access Key Secret> 
               -e <EndPoint>

使用AnalyticDB for PostgreSQL 6.0的OSS外表进行TPCH测试数据导入,已在北京可用区的OSS上准备好了可以使用OSS外表的数据,且为公共可读权限。用户无需再进行数据生成,然后再导入数据到OSS。
OSS外表文档参考: OSS数据导入AnalyticDB for PostgreSQL

创建OSS外部表的建表语句示例(含OSS地址)

create readable external table ext_nation ( n_nationkey int, n_name varchar(25), n_regionkey integer, 
  n_comment varchar(152)) 
    location('oss://oss-cn-beijing.aliyuncs.com 
    filepath=data/tpch_data_1000x/nation.tbl 
    id=$AccessKey key=$AccessKeySecret 
    bucket=oss-y') FORMAT 'TEXT' (DELIMITER '|' ) ;


create readable external table ext_region ( R_REGIONKEY int, R_NAME CHAR(25),R_COMMENT VARCHAR(152)) 
    location('oss://oss-cn-beijing.aliyuncs.com 
    filepath=data/tpch_data_1000x/region.tbl 
    id=$AccessKey key=$AccessKeySecret 
    bucket=oss-y') FORMAT 'TEXT' (DELIMITER '|' ) ;

CREATE readable external TABLE ext_lineitem ( l_orderkey bigint, l_partkey bigint, l_suppkey bigint, 
  l_linenumber bigint, l_quantity double precision, l_extendedprice double precision, 
  l_discount double precision, l_tax double precision, l_returnflag CHAR(1), 
  l_linestatus CHAR(1), l_shipdate DATE, l_commitdate DATE, l_receiptdate DATE, 
  l_shipinstruct CHAR(25), l_shipmode CHAR(10), l_comment VARCHAR(44)) 
    location('oss://oss-cn-beijing.aliyuncs.com 
    filepath=data/tpch_data_1000x/lineitem.tbl 
    id= $AccessKey key= $AccessKeySecret 
    bucket=oss-y ') FORMAT 'TEXT' (DELIMITER '|' ) ;

CREATE readable external TABLE ext_orders ( o_orderkey bigint , o_custkey bigint , o_orderstatus CHAR(1) , 
  o_totalprice double precision, o_orderdate DATE , o_orderpriority CHAR(15) , o_clerk CHAR(15) , 
  o_shippriority bigint , o_comment VARCHAR(79) ) 
    location('oss://oss-cn-beijing.aliyuncs.com 
    filepath=data/tpch_data_1000x/orders.tbl 
    id=$AccessKey key=$AccessKeySecret  
    bucket=oss-y') FORMAT 'TEXT' (DELIMITER '|' ) ;

CREATE readable external TABLE ext_part ( p_partkey bigint , p_name VARCHAR(55) , p_mfgr CHAR(25) , 
  p_brand CHAR(10) , p_type VARCHAR(25) , p_size bigint , p_container CHAR(10) , 
  p_retailprice double precision , p_comment VARCHAR(23) ) 
    location('oss://oss-cn-beijing.aliyuncs.com 
    filepath=data/tpch_data_1000x/part.tbl 
    id= $AccessKey key= $AccessKeySecret 
    bucket=oss-y') FORMAT 'TEXT' (DELIMITER '|' ) ;

CREATE readable external TABLE ext_partsupp ( ps_partkey bigint , ps_suppkey bigint , 
  ps_availqty bigint , ps_supplycost double precision , ps_comment VARCHAR(199) ) 
    location('oss://oss-cn-beijing.aliyuncs.com 
    filepath=data/tpch_data_1000x/partsupp.tbl 
    id= $AccessKey key= $AccessKeySecret 
    bucket=oss-y') FORMAT 'TEXT' (DELIMITER '|' ) ;

CREATE readable external TABLE ext_supplier ( s_suppkey bigint , s_name CHAR(25) , 
  s_address VARCHAR(40) , s_nationkey bigint , s_phone CHAR(15) , s_acctbal DECIMAL(15,2) , 
  s_comment VARCHAR(101) ) 
    location('oss://oss-cn-beijing.aliyuncs.com 
    filepath=data/tpch_data_1000x/supplier.tbl 
    id= $AccessKey key= $AccessKeySecret
    bucket=oss-y') FORMAT 'TEXT' (DELIMITER '|' ) ;

CREATE readable external TABLE ext_customer ( c_custkey bigint , c_name VARCHAR(25) , 
  c_address VARCHAR(40) , c_nationkey bigint , c_phone CHAR(15) , c_acctbal double precision , 
  c_mktsegment CHAR(10) , c_comment VARCHAR(117) ) 
    location('oss://oss-cn-beijing.aliyuncs.com 
    filepath=data/tpch_data_1000x/customer.tbl 
    id= $AccessKey key= $AccessKeySecret
    bucket=oss-y') FORMAT 'TEXT' (DELIMITER '|' ) ;

从OSS外表写入TPC-H数据到AnalyticDB for PostgreSQL

insert into nation select * from ext_nation;
insert into region select * from ext_region;
insert into lineitem select * from ext_lineitem;
insert into orders select * from ext_orders;
insert into customer select * from ext_customer;
insert into part select * from ext_part;
insert into partsupp select * from ext_partsupp;
insert into supplier select * from ext_supplier;

至此数据导入完毕,进入查询执行阶段

收集统计信息

analyze nation;
analyze region;
analyze lineitem;
analyze orders;
analyze customer;
analyze part;
analyze partsupp;
analyze supplier;

执行查询

使用如下shell脚本测试,也可以通过psql等其他客户端逐条执行查询SQL。具体的22条SQL语句见本文最后。

查询加速

特别的,AnalyticDB for PostgreSQL 6.0 的向量加速引擎,可以提升查询性能1倍左右。
在session级别, 修改GUC变量enable_odyssey 为on ,可开启加速引擎。
set enable_odyssey = on;
如需关闭加速引擎,设置该参数为off。
set enable_odyssey = off;
如果使用如下脚本执行22条TPCH SQL,需要在每个Query文件开始出增加一行,set enable_odyssey = on;

total_cost=0

for i in {1..22}
do
        echo "begin run Q${i}, query/q$i.sql , `date`"
        begin_time=`date +%s.%N`
        #psql -h ${实例连接地址} -p ${端口号} -U ${数据库用户} -f query/q${i}.sql > ./log/log_q${i}.out
        rc=$?
        end_time=`date +%s.%N`
        cost=`echo "$end_time-$begin_time"|bc`
        total_cost=`echo "$total_cost+$cost"|bc`
        if [ $rc -ne 0 ] ; then
              printf "run Q%s fail, cost: %.2f, totalCost: %.2f, `date`\n" $i $cost $total_cost
         else
              printf "run Q%s succ, cost: %.2f, totalCost: %.2f, `date`\n" $i $cost $total_cost
         fi
done

测试结果

各表数据量说明,1TB数据(不含索引)

表名 数据条目数
customer 15000w
lineitem 600000w
nation 25
orders 150000w
part 20000w
partsupp 80000w
region 5
supplier 1000w

执行时间统计

SQL 1core * 64节点 SSD型(RT:秒) 4core * 32节点 SSD型(RT:秒) 4core * 32节点 SSD型 - 开启向量加速引擎(RT:秒)
Total 3703.56 2534.29 1258.24

22个SQL

-- Q1
-- 开启向量加速引擎,并设置开关变量为on
set enable_odyssey = on;
select
    l_returnflag,
    l_linestatus,
    sum(l_quantity) as sum_qty,
    sum(l_extendedprice) as sum_base_price,
    sum(l_extendedprice * (1 - l_discount)) as sum_disc_price,
    sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as sum_charge,
    avg(l_quantity) as avg_qty,
    avg(l_extendedprice) as avg_price,
    avg(l_discount) as avg_disc,
    count(*) as count_order
from
    lineitem
where
    l_shipdate <= date '1998-12-01' - interval '93 day'
group by
    l_returnflag,
    l_linestatus
order by
    l_returnflag,
    l_linestatus;

-- Q2
-- 开启向量加速引擎,并设置开关变量为on
set enable_odyssey = on;
select
    s_acctbal,
    s_name,
    n_name,
    p_partkey,
    p_mfgr,
    s_address,
    s_phone,
    s_comment
from
    part,
    supplier,
    partsupp,
    nation,
    region
where
    p_partkey = ps_partkey
    and s_suppkey = ps_suppkey
    and p_size = 23
    and p_type like '%STEEL'
    and s_nationkey = n_nationkey
    and n_regionkey = r_regionkey
    and r_name = 'EUROPE'
    and ps_supplycost = (
        select
            min(ps_supplycost)
        from
            partsupp,
            supplier,
            nation,
            region
        where
            p_partkey = ps_partkey
            and s_suppkey = ps_suppkey
            and s_nationkey = n_nationkey
            and n_regionkey = r_regionkey
            and r_name = 'EUROPE'
    )
order by
    s_acctbal desc,
    n_name,
    s_name,
    p_partkey
limit 100;

-- Q3
-- 开启向量加速引擎,并设置开关变量为on
set enable_odyssey = on;
select
    l_orderkey,
    sum(l_extendedprice * (1 - l_discount)) as revenue,
    o_orderdate,
    o_shippriority
from
    customer,
    orders,
    lineitem
where
    c_mktsegment = 'MACHINERY'
    and c_custkey = o_custkey
    and l_orderkey = o_orderkey
    and o_orderdate < date '1995-03-24'
    and l_shipdate > date '1995-03-24'
group by
    l_orderkey,
    o_orderdate,
    o_shippriority
order by
    revenue desc,
    o_orderdate
limit 10;

-- Q4
-- 开启向量加速引擎,并设置开关变量为on
set enable_odyssey = on;
select
    o_orderpriority,
    count(*) as order_count
from
    orders
where
    o_orderdate >= date '1996-08-01'
    and o_orderdate < date '1996-08-01' + interval '3' month
    and exists (
        select
            *
        from
            lineitem
        where
            l_orderkey = o_orderkey
            and l_commitdate < l_receiptdate
    )
group by
    o_orderpriority
order by
    o_orderpriority;

-- Q5
-- 开启向量加速引擎,并设置开关变量为on
set enable_odyssey = on;
select
    n_name,
    sum(l_extendedprice * (1 - l_discount)) as revenue
from
    customer,
    orders,
    lineitem,
    supplier,
    nation,
    region
where
    c_custkey = o_custkey
    and l_orderkey = o_orderkey
    and l_suppkey = s_suppkey
    and c_nationkey = s_nationkey
    and s_nationkey = n_nationkey
    and n_regionkey = r_regionkey
    and r_name = 'MIDDLE EAST'
    and o_orderdate >= date '1994-01-01'
    and o_orderdate < date '1994-01-01' + interval '1' year
group by
    n_name
order by
    revenue desc;

-- Q6
-- 开启向量加速引擎,并设置开关变量为on
set enable_odyssey = on;
select
    sum(l_extendedprice * l_discount) as revenue
from
    lineitem
where
    l_shipdate >= date '1994-01-01'
    and l_shipdate < date '1994-01-01' + interval '1' year
    and l_discount between 0.06 - 0.01 and 0.06 + 0.01
    and l_quantity < 24;

-- Q7
-- 开启向量加速引擎,并设置开关变量为on
set enable_odyssey = on;
select
    supp_nation,
    cust_nation,
    l_year,
    sum(volume) as revenue
from
    (
        select
            n1.n_name as supp_nation,
            n2.n_name as cust_nation,
            extract(year from l_shipdate) as l_year,
            l_extendedprice * (1 - l_discount) as volume
        from
            supplier,
            lineitem,
            orders,
            customer,
            nation n1,
            nation n2
        where
            s_suppkey = l_suppkey
            and o_orderkey = l_orderkey
            and c_custkey = o_custkey
            and s_nationkey = n1.n_nationkey
            and c_nationkey = n2.n_nationkey
            and (
                (n1.n_name = 'JORDAN' and n2.n_name = 'INDONESIA')
                or (n1.n_name = 'INDONESIA' and n2.n_name = 'JORDAN')
            )
            and l_shipdate between date '1995-01-01' and date '1996-12-31'
    ) as shipping
group by
    supp_nation,
    cust_nation,
    l_year
order by
    supp_nation,
    cust_nation,
    l_year;

-- Q8
-- 开启向量加速引擎,并设置开关变量为on
set enable_odyssey = on;
select
    o_year,
    sum(case
        when nation = 'INDONESIA' then volume
        else 0
    end) / sum(volume) as mkt_share
from
    (
        select
            extract(year from o_orderdate) as o_year,
            l_extendedprice * (1 - l_discount) as volume,
            n2.n_name as nation
        from
            part,
            supplier,
            lineitem,
            orders,
            customer,
            nation n1,
            nation n2,
            region
        where
            p_partkey = l_partkey
            and s_suppkey = l_suppkey
            and l_orderkey = o_orderkey
            and o_custkey = c_custkey
            and c_nationkey = n1.n_nationkey
            and n1.n_regionkey = r_regionkey
            and r_name = 'ASIA'
            and s_nationkey = n2.n_nationkey
            and o_orderdate between date '1995-01-01' and date '1996-12-31'
            and p_type = 'STANDARD BRUSHED BRASS'
    ) as all_nations
group by
    o_year
order by
    o_year;

-- Q9
-- 开启向量加速引擎,并设置开关变量为on
set enable_odyssey = on;
select
    nation,
    o_year,
    sum(amount) as sum_profit
from
    (
        select
            n_name as nation,
            extract(year from o_orderdate) as o_year,
            l_extendedprice * (1 - l_discount) - ps_supplycost * l_quantity as amount
        from
            part,
            supplier,
            lineitem,
            partsupp,
            orders,
            nation
        where
            s_suppkey = l_suppkey
            and ps_suppkey = l_suppkey
            and ps_partkey = l_partkey
            and p_partkey = l_partkey
            and o_orderkey = l_orderkey
            and s_nationkey = n_nationkey
            and p_name like '%chartreuse%'
    ) as profit
group by
    nation,
    o_year
order by
    nation,
    o_year desc;

-- Q10
-- 开启向量加速引擎,并设置开关变量为on
set enable_odyssey = on;
select
    c_custkey,
    c_name,
    sum(l_extendedprice * (1 - l_discount)) as revenue,
    c_acctbal,
    n_name,
    c_address,
    c_phone,
    c_comment
from
    customer,
    orders,
    lineitem,
    nation
where
    c_custkey = o_custkey
    and l_orderkey = o_orderkey
    and o_orderdate >= date '1994-08-01'
    and o_orderdate < date '1994-08-01' + interval '3' month
    and l_returnflag = 'R'
    and c_nationkey = n_nationkey
group by
    c_custkey,
    c_name,
    c_acctbal,
    c_phone,
    n_name,
    c_address,
    c_comment
order by
    revenue desc
limit 20;

-- Q11
-- 开启向量加速引擎,并设置开关变量为on
set enable_odyssey = on;
select
    ps_partkey,
    sum(ps_supplycost * ps_availqty) as value
from
    partsupp,
    supplier,
    nation
where
    ps_suppkey = s_suppkey
    and s_nationkey = n_nationkey
    and n_name = 'INDONESIA'
group by
    ps_partkey having
        sum(ps_supplycost * ps_availqty) > (
            select
                sum(ps_supplycost * ps_availqty) * 0.0001000000
            from
                partsupp,
                supplier,
                nation
            where
                ps_suppkey = s_suppkey
                and s_nationkey = n_nationkey
                and n_name = 'INDONESIA'
        )
order by
    value desc;

-- Q12
-- 开启向量加速引擎,并设置开关变量为on
set enable_odyssey = on;
select
    l_shipmode,
    sum(case
        when o_orderpriority = '1-URGENT'
            or o_orderpriority = '2-HIGH'
            then 1
        else 0
    end) as high_line_count,
    sum(case
        when o_orderpriority <> '1-URGENT'
            and o_orderpriority <> '2-HIGH'
            then 1
        else 0
    end) as low_line_count
from
    orders,
    lineitem
where
    o_orderkey = l_orderkey
    and l_shipmode in ('REG AIR', 'TRUCK')
    and l_commitdate < l_receiptdate
    and l_shipdate < l_commitdate
    and l_receiptdate >= date '1994-01-01'
    and l_receiptdate < date '1994-01-01' + interval '1' year
group by
    l_shipmode
order by
    l_shipmode;

-- Q13
-- 开启向量加速引擎,并设置开关变量为on
set enable_odyssey = on;
select
    c_count,
    count(*) as custdist
from
    (
        select
            c_custkey,
            count(o_orderkey)
        from
            customer left outer join orders on
                c_custkey = o_custkey
                and o_comment not like '%pending%requests%'
        group by
            c_custkey
    ) as c_orders (c_custkey, c_count)
group by
    c_count
order by
    custdist desc,
    c_count desc;

-- Q14
-- 开启向量加速引擎,并设置开关变量为on
set enable_odyssey = on;
select
    100.00 * sum(case
        when p_type like 'PROMO%'
            then l_extendedprice * (1 - l_discount)
        else 0
    end) / sum(l_extendedprice * (1 - l_discount)) as promo_revenue
from
    lineitem,
    part
where
    l_partkey = p_partkey
    and l_shipdate >= date '1994-11-01'
    and l_shipdate < date '1994-11-01' + interval '1' month;

-- Q15
-- 开启向量加速引擎,并设置开关变量为on
set enable_odyssey = on;
create view revenue0 (supplier_no, total_revenue) as
    select
        l_suppkey,
        sum(l_extendedprice * (1 - l_discount))
    from
        lineitem
    where
        l_shipdate >= date '1997-10-01'
        and l_shipdate < date '1997-10-01' + interval '3' month
    group by
        l_suppkey;
select
    s_suppkey,
    s_name,
    s_address,
    s_phone,
    total_revenue
from
    supplier,
    revenue0
where
    s_suppkey = supplier_no
    and total_revenue = (
        select
            max(total_revenue)
        from
            revenue0
    )
order by
    s_suppkey;
drop view revenue0;

-- Q16
-- 开启向量加速引擎,并设置开关变量为on
set enable_odyssey = on;
select
    p_brand,
    p_type,
    p_size,
    count(distinct ps_suppkey) as supplier_cnt
from
    partsupp,
    part
where
    p_partkey = ps_partkey
    and p_brand <> 'Brand#44'
    and p_type not like 'SMALL BURNISHED%'
    and p_size in (36, 27, 34, 45, 11, 6, 25, 16)
    and ps_suppkey not in (
        select
            s_suppkey
        from
            supplier
        where
            s_comment like '%Customer%Complaints%'
    )
group by
    p_brand,
    p_type,
    p_size
order by
    supplier_cnt desc,
    p_brand,
    p_type,
    p_size;

-- Q17
-- 开启向量加速引擎,并设置开关变量为on
set enable_odyssey = on;
select
    sum(l_extendedprice) / 7.0 as avg_yearly
from
    lineitem,
    part
where
    p_partkey = l_partkey
    and p_brand = 'Brand#42'
    and p_container = 'JUMBO PACK'
    and l_quantity < (
        select
            0.2 * avg(l_quantity)
        from
            lineitem
        where
            l_partkey = p_partkey
    );

-- Q18
-- 开启向量加速引擎,并设置开关变量为on
set enable_odyssey = on;
select
    c_name,
    c_custkey,
    o_orderkey,
    o_orderdate,
    o_totalprice,
    sum(l_quantity)
from
    customer,
    orders,
    lineitem
where
    o_orderkey in (
        select
            l_orderkey
        from
            lineitem
        group by
            l_orderkey having
                sum(l_quantity) > 312
    )
    and c_custkey = o_custkey
    and o_orderkey = l_orderkey
group by
    c_name,
    c_custkey,
    o_orderkey,
    o_orderdate,
    o_totalprice
order by
    o_totalprice desc,
    o_orderdate
limit 100;

-- Q19
-- 开启向量加速引擎,并设置开关变量为on
set enable_odyssey = on;
select
    sum(l_extendedprice* (1 - l_discount)) as revenue
from
    lineitem,
    part
where
    (
        p_partkey = l_partkey
        and p_brand = 'Brand#43'
        and p_container in ('SM CASE', 'SM BOX', 'SM PACK', 'SM PKG')
        and l_quantity >= 5 and l_quantity <= 5 + 10
        and p_size between 1 and 5
        and l_shipmode in ('AIR', 'AIR REG')
        and l_shipinstruct = 'DELIVER IN PERSON'
    )
    or
    (
        p_partkey = l_partkey
        and p_brand = 'Brand#45'
        and p_container in ('MED BAG', 'MED BOX', 'MED PKG', 'MED PACK')
        and l_quantity >= 12 and l_quantity <= 12 + 10
        and p_size between 1 and 10
        and l_shipmode in ('AIR', 'AIR REG')
        and l_shipinstruct = 'DELIVER IN PERSON'
    )
    or
    (
        p_partkey = l_partkey
        and p_brand = 'Brand#11'
        and p_container in ('LG CASE', 'LG BOX', 'LG PACK', 'LG PKG')
        and l_quantity >= 24 and l_quantity <= 24 + 10
        and p_size between 1 and 15
        and l_shipmode in ('AIR', 'AIR REG')
        and l_shipinstruct = 'DELIVER IN PERSON'
    );

-- Q20
-- 开启向量加速引擎,并设置开关变量为on
set enable_odyssey = on;
select
    s_name,
    s_address
from
    supplier,
    nation
where
    s_suppkey in (
        select
            ps_suppkey
        from
            partsupp
        where
            ps_partkey in (
                select
                    p_partkey
                from
                    part
                where
                    p_name like 'magenta%'
            )
            and ps_availqty > (
                select
                    0.5 * sum(l_quantity)
                from
                    lineitem
                where
                    l_partkey = ps_partkey
                    and l_suppkey = ps_suppkey
                    and l_shipdate >= date '1996-01-01'
                    and l_shipdate < date '1996-01-01' + interval '1' year
            )
    )
    and s_nationkey = n_nationkey
    and n_name = 'RUSSIA'
order by
    s_name;

-- Q21
-- 开启向量加速引擎,并设置开关变量为on
set enable_odyssey = on;
select
    s_name,
    count(*) as numwait
from
    supplier,
    lineitem l1,
    orders,
    nation
where
    s_suppkey = l1.l_suppkey
    and o_orderkey = l1.l_orderkey
    and o_orderstatus = 'F'
    and l1.l_receiptdate > l1.l_commitdate
    and exists (
        select
            *
        from
            lineitem l2
        where
            l2.l_orderkey = l1.l_orderkey
            and l2.l_suppkey <> l1.l_suppkey
    )
    and not exists (
        select
            *
        from
            lineitem l3
        where
            l3.l_orderkey = l1.l_orderkey
            and l3.l_suppkey <> l1.l_suppkey
            and l3.l_receiptdate > l3.l_commitdate
    )
    and s_nationkey = n_nationkey
    and n_name = 'MOZAMBIQUE'
group by
    s_name
order by
    numwait desc,
    s_name
limit 100;

-- Q22
-- 开启向量加速引擎,并设置开关变量为on
set enable_odyssey = on;
select
        cntrycode,
        count(*) as numcust,
        sum(c_acctbal) as totacctbal
from
        (
                select
                        substring(c_phone from 1 for 2) as cntrycode,
                        c_acctbal
                from
                        customer
                where
                        substring(c_phone from 1 for 2) in
                                ('13', '31', '23', '29', '30', '18', '17')
                        and c_acctbal > (
                                select
                                        avg(c_acctbal)
                                from
                                        customer
                                where
                                        c_acctbal > 0.00
                                        and substring(c_phone from 1 for 2) in
                                                ('13', '31', '23', '29', '30', '18', '17')
                        )
                        and not exists (
                                select
                                        *
                                from
                                        orders
                                where
                                        o_custkey = c_custkey
                        )
        ) as custsale
group by
        cntrycode
order by
        cntrycode;
        
相关实践学习
AnalyticDB MySQL海量数据秒级分析体验
快速上手AnalyticDB MySQL,玩转SQL开发等功能!本教程介绍如何在AnalyticDB MySQL中,一键加载内置数据集,并基于自动生成的查询脚本,运行复杂查询语句,秒级生成查询结果。
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
目录
相关文章
|
6月前
|
SQL Oracle 关系型数据库
实时计算 Flink版操作报错之往GREENPLUM 6 写数据,用postgresql-42.2.9.jar 报 ON CONFLICT (uuid) DO UPDATE SET 语法有问题。怎么解决
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
|
5月前
|
消息中间件 Java 关系型数据库
实时计算 Flink版操作报错合集之从 PostgreSQL 读取数据并写入 Kafka 时,遇到 "initial slot snapshot too large" 的错误,该怎么办
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
1010 0
|
5月前
|
DataWorks 安全 关系型数据库
DataWorks产品使用合集之使用Flink CDC读取PostgreSQL数据时如何指定编码格式
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
3月前
|
存储 算法 Cloud Native
【PolarDB-X列存魔法】揭秘TPC-H测试背后的性能优化秘籍!
【8月更文挑战第25天】阿里巴巴的云原生数据库PolarDB-X以其出色的性能、可靠性和扩展性闻名,在多种业务场景中广泛应用。尤其在列存储模式下,PolarDB-X针对分析型查询进行了优化,显著提升了数据读取效率。本文通过TPC-H基准测试探讨PolarDB-X列存执行计划的优化策略,包括高效数据扫描、专用查询算法以及动态调整执行计划等功能,以满足复杂查询的需求并提高数据分析性能。
92 1
|
4月前
|
SQL 弹性计算 测试技术
实时数仓Hologres TPC-H及点查性能开箱测试
Hologres现在仍然是TPCH-30000榜单的全球第一,领先第二名高达23%,最新发布的2.2版本相比之前的1.x的版本性能大约提升100%。
|
3月前
|
C# Windows IDE
WPF入门实战:零基础快速搭建第一个应用程序,让你的开发之旅更上一层楼!
【8月更文挑战第31天】在软件开发领域,WPF(Windows Presentation Foundation)是一种流行的图形界面技术,用于创建桌面应用程序。本文详细介绍如何快速搭建首个WPF应用,包括安装.NET Framework和Visual Studio、理解基础概念、创建新项目、设计界面、添加逻辑及运行调试等关键步骤,帮助初学者顺利入门并完成简单应用的开发。
106 0
|
3月前
|
SQL 关系型数据库 MySQL
SQL Server、MySQL、PostgreSQL:主流数据库SQL语法异同比较——深入探讨数据类型、分页查询、表创建与数据插入、函数和索引等关键语法差异,为跨数据库开发提供实用指导
【8月更文挑战第31天】SQL Server、MySQL和PostgreSQL是当今最流行的关系型数据库管理系统,均使用SQL作为查询语言,但在语法和功能实现上存在差异。本文将比较它们在数据类型、分页查询、创建和插入数据以及函数和索引等方面的异同,帮助开发者更好地理解和使用这些数据库。尽管它们共用SQL语言,但每个系统都有独特的语法规则,了解这些差异有助于提升开发效率和项目成功率。
360 0
|
3月前
|
SQL 关系型数据库 HIVE
实时计算 Flink版产品使用问题之如何将PostgreSQL数据实时入库Hive并实现断点续传
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
3月前
|
开发框架 关系型数据库 数据库
在 PostgreSQL 中,解决图片二进制数据,由于bytea_output参数问题导致显示不正常的问题。
在 PostgreSQL 中,解决图片二进制数据,由于bytea_output参数问题导致显示不正常的问题。
|
5月前
|
关系型数据库 5G PostgreSQL
postgreSQL 导出数据、导入
postgreSQL 导出数据、导入
55 1

相关产品

  • 云数据库 RDS PostgreSQL 版