当搜索推荐遇到广告 - 三位一体的AI·OS技术新体系

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
OpenSearch LLM智能问答版免费试用套餐,存储1GB首月+计算资源100CU
智能开放搜索 OpenSearch向量检索版,4核32GB 1个月
简介: AI·OS是由阿里巴巴搜索工程团队负责,集个性化搜索、推荐、广告三位一体的技术平台。本次分享来自该团队资深算法专家喜德,为大家带来这一年里,搜索工程体系在阿里巴巴内网及开源平台上的最新技术成果。

本文字数:2280
阅读时间:4~7分钟

您将获得:
1、阿里云AI·OS技术体系的核心价值
2、全面了解阿里云AI·OS技术体系架构
3、深度解析支持阿里云AI·OS技术体系的核心组件及业务场景实现方式

以下是正文


(本文内容来阿里巴巴资深技术专家喜德,在云栖大会推荐与搜索工程技术专场上的分享)

image.png


(喜德_阿里巴巴资深算法专家)

AI·OS是由阿里巴巴搜索工程团队负责,集个性化搜索、推荐、广告三位一体的技术平台。本次分享来自该团队资深算法专家喜德,为大家带来这一年里,搜索工程体系在阿里巴巴内网及开源平台上的最新技术成果。

AI·OS所面临的挑战

image.png

大家在使用手淘时会有三种页面是大家会经常碰到:1、搜索结果页;2、推荐业面;3、大促业面。如最近中秋节的活动,在中秋节主会场中,搜索与推荐的结果都是个性化的。这样大型的会场页面不仅需要涉及后台选品、广告投放、业面搭建,同时还要负责全流程深度学习训练以及预测体系,如果让你负责搭建这样一个促销页面,需要多少时间完成?有的人会觉得可能需要一个月的时间。实际情况是我们完成这样一个页面,只需要一个不懂技术的运营,最快10分钟,最慢15分钟,就可以搭建完成并上线,让用户看到。

image.png

除了淘宝之外阿里巴巴有不同的APP,每个APP都有搜索、推荐、促销、广告。这么多的业务如何让他们能够像手淘一样,拥有最快的算法迭代效率、最佳算法效果、最强性能,且在同一个引擎平台,用最少的人力支持。这就是搜索推荐工程体系要解决的问题。

AI·OS的平台价值及核心能力

image.png

这个问题在工业界很常见。现在生活中绝大多数人都有车且种类各异,如果汽车厂商运用垂直化的方式,从头到尾做,则不管是研发周期的长度,投入的人力、技术稳定时间,都是需要消耗大量资源且花费很长时间。而汽车工业界解决这个问题的方法,就是打造一个汽车平台,最有名就是大众的MQB平台,MQB平台对动力系统、操控系统这些汽车共有的部件进行沉淀,同时保留很强的可定制的能力。

image.png

那么回到搜索和推荐的业务上来,我们同样需要支持大量的业务端,其中包括阿里内网的业务、云上的业务,比如开放搜索、Elasticsearch、智能推荐;有效的支持这些业务则一定要有基础能力的沉淀,包括在线能力的沉淀,像召回、排序、分布式通信框架,高性能的索引结构,深度学习的训练、预测、数据处理的全流程、大量服务器的管理、离线数据处理能力、运维管控的能力以及给用户提供方便的插件定制能力。这些能力聚集到一起就是AI·OS平台的价值。

AI·OS架构解读

image.png

AI·OS底层部件是Hippo,一个兼容Kubernetes api的资源调度系统,在这个系统中,保障阿里内网在搜索推荐体系实现70%峰值利用率的情况下,在线业务不受任何影响。同时我们支持周均55%的平均CPU的利用率,这意味着,如果在线服务有峰谷,在线服务只有10%-20%CPU的使用率的情况下,结合离线混布做到平均55%的CPU利用率,可以节省一倍的机器,成本可以大幅降低。

在资源调度系统之上,我分为在线和离线两部分,而在线这部分我们可以分为五大核心引擎,通过这五个核心引擎可以组成不同的业务能力,比如做一个搜索系统,可以用图引擎做个性化信息的获取,用HA3搜索引擎做搜索召回,用深度学习的预测引擎做相关的算分和排序。而做推荐引擎,只需把搜索引擎换成推荐引擎就可以了,这样就可以组合出一个推荐业务,通过这种底层灵活的组件结合,可以保证快速业务的迭代,并保障非常好的性能。

XDL介绍:

在五大引擎之上,我们针对不同的业务特点,将搜索、推荐、广告运用在不同的运维系统和业务接入系统。离线部分,基于计算平台的四大技术组建构建我们的离线系统,包括深度学习PAI、数据分析处理平台MaxComputer、实时计算平台Blink、交互式分析平台Hologres。因为采用云上、云下一体化的结构,四大平台在阿里云上都可以看到。基于这四大平台,加上搜索、推荐、广告的商品特性,需要由我们自己深度学习的训练平台XDL。XDL主要解决的问题在搜索推荐广告商品的场景中,解决大规模分布式的训练和预测的问题,用XDL平台的核心原因,是因为商品的场景,和语音图象视频翻译之间的深度学习场景有很大不同,而不同点体现在商品场景中,有大量稀疏的特征,这意味着我们会有亿级别的特征,十亿级别的参数,百亿级别的样本,这个量级很大且稀疏,我们需要结合场景,做针对性的调整,这个调优与图像的场景不同的,这就促使我们必须有这样的平台。目前XDL处于开源状态。

image.png

我们在支持世界上最大的垂直商业搜索引擎时,数据的量级和业务规模决定了这是一个大规模高频触发处理平台,且支持分钟级实时学习。在深度训练场景中,训练越实时,用户的行为反馈就会越快,这也是商业场景中非常有特点的需求。在看到一个商品的时候,你会同时看到一批商品特性跟一般训练的组合的不同,会有结构性的特点,有利于我们提供针对性优化,对性能和存储带来提升。

Euler介绍:

image.png

在图学习细分领域,我们同样可以在商业场景中获得很好的效果,我们会有专门深度学习的子分支Euler,Euler是一个非深度部分的数据处理平台,主要针对搜索和推荐数据索引前需要用到的一些数据分析处理,以及分布式计算的业务逻辑。另外是端到端的深度学习、训练、预测一体化的系统算法平台,处理的是从样本的生成、训练,到模型的验证、分析,再到在线的上线切换、服务,一直到样本回流。通过这个系统,算法同学可以实现非常快的迭代速度。因为在深度学习迭代过程中,迭代越快,你的算法效果可以做的越好。在商业场景中,我们会有一些常用的图形算法,从游走类,如deepwork,到比较复杂的卷积类,如GCNGCT等,我们在Euler这个平台里面都给大家提供一个基础的实现能力,同时阿里内部在用的三种算法我们也同样进行了开源。大家可以通过上图二维码扫码了解。同时我们在图学习的底层提供了非常关键的组建--图引擎,我们内制的游走类和卷积类的算法,支持管理的接口,方便大家拓展算法,给自己的业务带来很好的效率提升。

基于这个AI·OS算法平台,我们不仅支持了阿里内部搜索推荐业务,同时也支持阿里广告业务、云上的Elasticsearch、开放搜索、智能推荐这些业务,所以是三位一体的引擎平台体系。

相关活动:

限时折扣截止--11/29

  1. 新购,首月75折
  2. 新购/续购/升级,预购6个月85折
  3. 新购/续购/升级,预购12个月8折

点击下方产品链接购买

开放搜索(Opensearch)
阿里巴巴自主研发的大规模分布式搜索引擎平台,其核心引擎HA3(问天3)系统为包括淘宝、天猫在内的阿里集团核心业务提供搜索服务支持。通过集成智能查询语义理解、机器学习排序算法等能力,旨在为企业提供高搜索质量的一站式内容智能搜索服务。
智能推荐(AIRec)
基于阿里巴巴领先的大数据和人工智能技术,结合在电商、内容、新闻、视频直播和社交等多个行业领域的积累,为全球企业及开发者提供个性化推荐服务

加入社区

点击 订阅《阿里云搜索与推荐技术交流期刊》,获取本片原文干货文稿!

如果你想与更多开发者交流随时交流、了解最前沿的搜索与推荐技术,可以扫码加入社群
TB10DYxkYY1gK0jSZTEXXXDQVXa-894-1075.jpg

相关实践学习
基于OpenSearch搭建高质量商品搜索服务
本场景主要介绍开放搜索(OpenSearch)打造独有的电商行业垂直解决方案,模板内置电商查询分析、排序表达式及行业算法能力,沉浸式体验更高性能和效果的智能搜索服务,助力企业在线业务智能增长。
相关文章
|
5天前
|
人工智能 自然语言处理 机器人
文档智能与RAG技术如何提升AI大模型的业务理解能力
随着人工智能的发展,AI大模型在自然语言处理中的应用日益广泛。文档智能和检索增强生成(RAG)技术的兴起,为模型更好地理解和适应特定业务场景提供了新方案。文档智能通过自动化提取和分析非结构化文档中的信息,提高工作效率和准确性。RAG结合检索机制和生成模型,利用外部知识库提高生成内容的相关性和准确性。两者的结合进一步增强了AI大模型的业务理解能力,助力企业数字化转型。
35 3
|
8天前
|
人工智能 搜索推荐 小程序
无广告,直达结果的AI搜索引擎
在信息海洋中寻找知识,却常被广告和无关结果困扰?秘塔AI搜索能完美解决这些问题。它无广告、直达结果,全网搜索内容提炼整合,并提供思维导图、相关事件及参考来源,让你高效获取精准答案。快来体验吧![访问地址](https://metaso.cn/)
51 6
无广告,直达结果的AI搜索引擎
|
3天前
|
人工智能 文字识别 运维
AI多模态的5大核心关键技术,让高端制造实现智能化管理
结合大模型应用场景,通过AI技术解析高端制造业的复杂设备与文档数据,自动化地将大型零件、机械图纸、操作手册等文档结构化。核心技术包括版面识别、表格抽取、要素抽取和文档抽取,实现信息的系统化管理和高效查询,大幅提升设备维护和生产管理的效率。
|
13天前
|
机器学习/深度学习 人工智能 自然语言处理
思通数科AI平台在尽职调查中的技术解析与应用
思通数科AI多模态能力平台结合OCR、NLP和深度学习技术,为IPO尽职调查、融资等重要交易环节提供智能化解决方案。平台自动识别、提取并分类海量文档,实现高效数据核验与合规性检查,显著提升审查速度和精准度,同时保障敏感信息管理和数据安全。
61 11
|
8天前
|
人工智能 自然语言处理 算法
企业内训|AI/大模型/智能体的测评/评估技术-某电信运营商互联网研发中心
本课程是TsingtaoAI专为某电信运营商的互联网研发中心的AI算法工程师设计,已于近日在广州对客户团队完成交付。课程聚焦AI算法工程师在AI、大模型和智能体的测评/评估技术中的关键能力建设,深入探讨如何基于当前先进的AI、大模型与智能体技术,构建符合实际场景需求的科学测评体系。课程内容涵盖大模型及智能体的基础理论、测评集构建、评分标准、自动化与人工测评方法,以及特定垂直场景下的测评实战等方面。
43 4
|
8天前
|
机器学习/深度学习 人工智能 算法
基于AI的性能优化技术研究
基于AI的性能优化技术研究
|
12天前
|
机器学习/深度学习 人工智能 算法
AI技术在医疗健康领域的应用与挑战####
本文旨在探讨人工智能(AI)技术在医疗健康领域的创新应用及其面临的主要挑战。通过深入分析AI如何助力疾病诊断、治疗方案优化、患者管理及药物研发,本文揭示了AI技术在提升医疗服务质量、效率和可及性方面的巨大潜力。同时,文章也指出了数据隐私、伦理道德、技术局限性等关键问题,并提出了相应的解决策略和未来发展方向。本文为医疗从业者、研究者及政策制定者提供了对AI医疗技术的全面理解,促进了跨学科合作与创新。 ####
|
11天前
|
人工智能 算法
AI技术在医疗领域的应用及其挑战
【10月更文挑战第31天】本文将探讨AI技术在医疗领域的应用及其面临的挑战。我们将从AI技术的基本概念开始,然后详细介绍其在医疗领域的应用,包括疾病诊断、药物研发、患者护理等方面。最后,我们将讨论AI技术在医疗领域面临的挑战,如数据隐私、算法偏见等问题。
|
11天前
|
存储 人工智能 文字识别
AI与OCR:数字档案馆图像扫描与文字识别技术实现与项目案例
本文介绍了纸质档案数字化的技术流程,包括高精度扫描、图像预处理、自动边界检测与切割、文字与图片分离抽取、档案识别与文本提取,以及识别结果的自动保存。通过去噪、增强对比度、校正倾斜等预处理技术,提高图像质量,确保OCR识别的准确性。平台还支持多字体识别、批量处理和结构化存储,实现了高效、准确的档案数字化。具体应用案例显示,该技术在江西省某地质资料档案馆中显著提升了档案管理的效率和质量。
|
9天前
|
机器学习/深度学习 人工智能 算法
AI技术在医疗领域的应用及其挑战
【10月更文挑战第33天】随着人工智能技术的不断发展,其在医疗领域的应用也越来越广泛。从辅助诊断到治疗方案的制定,AI技术都发挥着重要作用。然而,随之而来的挑战也不容忽视,如数据隐私保护、算法的透明度和可解释性等问题。本文将探讨AI技术在医疗领域的应用及其面临的挑战。
20 0