大数据workshop:《在线用户行为分析:基于流式计算的数据处理及应用》之《实时数据分析:海量日志数据多维透视》篇

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 本手册为云栖大会Workshop之《在线用户行为分析:基于流式计算的数据处理及应用》场的《实时数据分析:海量日志数据多维透视》篇所需。主要帮助现场学员熟悉并掌握阿里云数加·分析型数据库AnalyticDB的操作和使用。

实验背景介绍

了解更多2017云栖大会·成都峰会 TechInsight & Workshop.

本手册为云栖大会Workshop之《在线用户行为分析:基于流式计算的数据处理及应用》场的《实时数据分析:海量日志数据多维透视》篇所需。主要帮助现场学员熟悉并掌握阿里云数加·分析型数据库AnalyticDB的操作和使用。

实验涉及大数据产品

前提准备

必备条件:确保已经获取到实验所需的阿里云账号和密码。

创建AnalyticDB表

通过DMS创建AnalyticDB数据表可以通过可视化建表和SQL窗口建表两种模式。

1.可视化建表

  • step1:进入DMS for AnalyticDB并使用阿里云账号进行登录。
  • step2:选择进入区域华北2,继而点击操作栏中的进入,进入workshop_demo数据库。

进入ADS

  • step3:根据自己获取的阿里云账号后三位数字选择进入对应表组。

【说明】如当前云账号为train00620@aliyun-inc.com,那么选择进入表组workshop_620。

  • step4:右键对应的表组,选择新建表进入可视化创建表模式。

选择新建表

  • step5:配置表名、字段名称、数据类型、主键,选择对应表组、一级分区列和更新方式,如下图所示。

其中表组选择自己云账号对应的表组,一级分区列选择为pv_time,分区方式中的哈希分区数为8.

表属性中表组选择自己账号所对应的表组,表名为pv_abc(abc同为账号后三位数字),如pv_day_620。因为表名在同一个AnalyticDB数据库中应全局唯一。

配置表

  • step6:在新建表页面底部,点击保存按钮。
  • step7:在提交变更弹出框中点击确定按钮,直至提示“变更执行成功”,如下图。

提交创建表

创建表成功

2.通过SQL窗口创建表

也可以通过DDL模式创建天浏览量pv的表,pv_day_abc(同上,abc为账号后三位数字)。

  • step1:点击顶部菜单栏中的SQL窗口,进入DDL模式。

SQL窗口

  • step2:在SQL窗口中依次复制并执行如下SQL代码。

执行SQL

建表SQL如下:(其中需要注意自己的表名、一级分区列以及建表所属的表组tablegroup属性。)

--统计当天实时浏览量pv
CREATE TABLE pv_day_620 (
pv_time varchar NOT NULL , 
pv_count bigint NOT NULL , 
primary key (pv_time)
) 
PARTITION BY HASH KEY(pv_time) PARTITION NUM 8
TABLEGROUP workshop_620
OPTIONS(UPDATETYPE='realtime')
;
  • step3:右键对应的表组,选择刷新查看已经创建成功的表。

刷新SQL


由于时间关系,关于区域访问量、按照小时统计浏览量、按设备统计浏览量和统计请求来源量的建表将不在此进行动手操作,但是讲师会给大家讲解。workshop结束后,会将所有指标统计过程的代码开发给大家进行体验。

>>>点击进入《流数据处理:通过StreamSQL分析用户行为》篇

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
2月前
|
数据采集 数据可视化 数据挖掘
Pandas数据应用:天气数据分析
本文介绍如何使用 Pandas 进行天气数据分析。Pandas 是一个强大的 Python 数据处理库,适合处理表格型数据。文章涵盖加载天气数据、处理缺失值、转换数据类型、时间序列分析(如滚动平均和重采样)等内容,并解决常见报错如 SettingWithCopyWarning、KeyError 和 TypeError。通过这些方法,帮助用户更好地进行气候趋势预测和决策。
134 71
|
28天前
|
SQL 数据可视化 大数据
从数据小白到大数据达人:一步步成为数据分析专家
从数据小白到大数据达人:一步步成为数据分析专家
214 92
|
3月前
|
数据采集 监控 数据可视化
BI工具在数据分析和业务洞察中的应用
BI工具在数据分析和业务洞察中的应用
119 11
|
3月前
|
消息中间件 数据挖掘 Kafka
Apache Kafka流处理实战:构建实时数据分析应用
【10月更文挑战第24天】在当今这个数据爆炸的时代,能够快速准确地处理实时数据变得尤为重要。无论是金融交易监控、网络行为分析还是物联网设备的数据收集,实时数据处理技术都是不可或缺的一部分。Apache Kafka作为一款高性能的消息队列系统,不仅支持传统的消息传递模式,还提供了强大的流处理能力,能够帮助开发者构建高效、可扩展的实时数据分析应用。
137 5
|
2月前
|
存储 数据采集 数据可视化
Pandas数据应用:电子商务数据分析
本文介绍如何使用 Pandas 进行电子商务数据分析,涵盖数据加载、清洗、预处理、分析与可视化。通过 `read_csv` 等函数加载数据,利用 `info()` 和 `describe()` 探索数据结构和统计信息。针对常见问题如缺失值、重复记录、异常值等,提供解决方案,如 `dropna()`、`drop_duplicates()` 和正则表达式处理。结合 Matplotlib 等库实现数据可视化,探讨内存不足和性能瓶颈的应对方法,并总结常见报错及解决策略,帮助提升电商企业的数据分析能力。
153 73
|
1天前
|
SQL 人工智能 数据可视化
数据团队必读:智能数据分析文档(DataV Note)五种高效工作模式
数据项目复杂,涉及代码、数据、运行环境等多部分。随着AI发展,数据科学团队面临挑战。协作式数据文档(如阿里云DataV Note)成为提升效率的关键工具。它支持跨角色协同、异构数据处理、多语言分析及高效沟通,帮助创建知识库,实现可重现的数据科学过程,并通过一键分享报告促进数据驱动决策。未来,大模型AI将进一步增强其功能,如智能绘图、总结探索、NLP2SQL/Python和AutoReport,为数据分析带来更多可能。
35 20
|
1月前
|
存储 数据采集 数据可视化
Pandas数据应用:医疗数据分析
Pandas是Python中强大的数据操作和分析库,广泛应用于医疗数据分析。本文介绍了使用Pandas进行医疗数据分析的常见问题及解决方案,涵盖数据导入、预处理、清洗、转换、可视化等方面。通过解决文件路径错误、编码不匹配、缺失值处理、异常值识别、分类变量编码等问题,结合Matplotlib等工具实现数据可视化,并提供了解决常见报错的方法。掌握这些技巧可以提高医疗数据分析的效率和准确性。
80 22
|
3月前
|
存储 机器学习/深度学习 数据可视化
数据集中存在大量的重复值,会对后续的数据分析和处理产生什么影响?
数据集中存在大量重复值可能会对后续的数据分析和处理产生多方面的负面影响
187 56
|
2月前
|
数据采集 数据可视化 索引
Pandas数据应用:股票数据分析
本文介绍了如何使用Pandas库进行股票数据分析。首先,通过pip安装并导入Pandas库。接着,从本地CSV文件读取股票数据,并解决常见的解析错误。然后,利用head()、info()等函数查看数据基本信息,进行数据清洗,处理缺失值和重复数据。再者,结合Matplotlib和Seaborn进行数据可视化,绘制收盘价折线图。最后,进行时间序列分析,设置日期索引、重采样和计算移动平均线。通过这些步骤,帮助读者掌握Pandas在股票数据分析中的应用。
92 5
|
2月前
|
数据采集 监控 数据挖掘
常用电商商品数据API接口(item get)概述,数据分析以及上货
电商商品数据API接口(item get)是电商平台上用于提供商品详细信息的接口。这些接口允许开发者或系统以编程方式获取商品的详细信息,包括但不限于商品的标题、价格、库存、图片、销量、规格参数、用户评价等。这些信息对于电商业务来说至关重要,是商品数据分析、价格监控、上货策略制定等工作的基础。

相关产品

  • 云原生大数据计算服务 MaxCompute