开发者社区> 初商> 正文
阿里云
为了无法计算的价值
打开APP
阿里云APP内打开

独家|让你的GPU为深度学习做好准备(附代码)

简介: 本文讲述了使用NVIDIA官方工具搭建基于GPU的TensorFlow平台的教程。
+关注继续查看

作者:Saurabh Bodhe

文章来源:微信公众号 数据派THU

翻译:陈振东

校对:车前子

本文约1000字,建议阅读5分钟。

本文讲述了使用NVIDIA官方工具搭建基于GPU的TensorFlow平台的教程。

image.png

《在谷歌云平台搭建基于GPU的深度学习》

我知道,基于GPU的高端的深度学习系统构建起来非常昂贵,并且不容易获得,除非你……

https://hackernoon.com/deep-learning-with-google-cloud-platform-66ada9d7d029

假设你有一台带有GPU的裸机, 当然如果有些配置是预先设置好的,可以跳过下面部分教程。此外,我还假设你有一个NVIDIA的显卡,我们在本教程中只讨论如何配置TensorFlow,也就是目前最受欢迎的深度学习框架(向谷歌致敬!)

安装CUDA驱动程序

CUDA是NVIDIA开发的一个并行计算平台,是搭建TensorFlow的基本前提。但是我们后面会提到,实际上最好使用逆向工作的方法,所以我们稍后再回到这部分。

安装TensorFlow

启动终端(如果是远程访问的话,就使用SSH)。总之,找到特定应用程序(如果有的话)所需的TensorFlow版本,或者如果没有这样的限制,可以使用我目前使用的TensorFlow 1.8.0。

pip install tensorflow-gpu==1.8.0

在TensorFlow安装的时候,我们运行下Python shell,

python

在Python shell中输入下面的代码:

import tensorflow as tf

但这时我们还没有安装CUDA,你会看到类似下面的报错:

ImportError: libcublas.so.9.0: cannot open shared object file: No such file or directory

9.0版本、文件名或者是其他的报错,这取决于您选择的TensorFlow版本。但是这样做的目的是知道我们需要哪个版本的CUDA,在这个例子中是9.0。官方文档中TF版本和CUDA版本的对应关系不是很清楚,所以我一直觉得这种逆向工程方法更好。

然后,我们再回到CUDA的安装。使用

exit()

退出Python shell。

安装CUDA驱动(相信我,这次是真的安装)

转到https://developer.nvidia.com/cuda-toolkit-archive。根据之前的操作,选择你需要的版本:

Linux->x86_64->Ubuntu->16.04 (or 17.04)->deb (network)

下载相应的.deb文件,并按照NVIDIA的官方说明安装CUDA。完成之后,让我们检查下是否一切正常。

再次打开Python shell并运行下面的代码,

import tensorflow as tf

当然,我们还没有完成,这次你会看到稍微不同的报错(如果在此之前就出现了类似的报错,参考下面的“Troubleshooting”中的修复方法)

ImportError: libcudnn.so.7: cannot open shared object file: No such file or directory

我们还需要NVIDIA提供的一个叫做cuDNN的库,它可以使用GPU加速深度神经网络的计算。注意,本教程中的cuDNN版本是7.0。

打开https://developer.nvidia.com/cudnn并注册一个帐户(免费的)。

注册好帐号后,登录
https://developer.nvidia.com/rdp/cudnn-archive

选择你需要的cuDNN版本,并确保你选择该版本所对应的CUDA版本。在本教程中,我们需要下载以下版本,

Download cuDNN v7.0.5 (Dec 5, 2017), for CUDA 9.0

在下拉选项中选择,

cuDNN v7.0.5 Library for Linux

这样,.tgz文件就开始下载了,将文件存储到你的机器上,并使用以下命令进行提取,

tar -xzvf

最终提取出一个名为“CUDA”的文件夹,切换到该目录,并执行下面两条命令,

sudo cp lib64/* /usr/local/cuda/lib64/
sudo cp include/cudnn.h /usr/local/cuda/include/

这样就完成了(但愿如此)。再次启动Python shell,这次你知道该做什么。

如果这次运行没有报错,那就没问题了。

为确保TensorFlow能够检测到GPU,在Python shell中使用以下代码,

tf.test.gpu_device_name()

它将会把所有可用的GPU显示出来。如果这个命令在旧版本的TF可能运行不了,可以试试下面的命令。

nvidia-smi

问题修复

如果所有配置都正确, nvidia-smi也可以执行,但TensorFlow仍然报出相同的错误,那么很有可能环境变量出了问题。执行下面的命令进行修复:

export LD_LIBRARY_PATH=/usr/local/cuda/lib64:${LD_LIBRARY_PATH}

export PATH=/usr/local/cuda/lib64:${PATH}

如果 nvidia-smi命令都无法执行,CUDA没有正确安装,那就重新安装配置一遍,看看有没有什么遗漏的地方。

欢迎大家提问,建议或者批评。

祝好。

原文标题:

Setting up your GPU machine to be Deep Learning ready

原文链接:

https://hackernoon.com/setting-up-your-gpu-machine-to-be-deep-learning-ready-96b61a7df278

编辑:于腾凯
校对:林亦霖

译者简介

陈振东,工资不高、想法不少,目前工作于北京银行软件开发部,负责核心系统的建设,主要方向包括客户信息(CIF)模型、三方支付交易等,并作为主要成员参与银行分布式与云计算平台的搭建。热衷于对金融数据架构与统计分析方法的研究,希望通过更多的交流拓宽工作和学习的思路。

翻译组招募信息

工作内容:将选取好的外文前沿文章准确地翻译成流畅的中文。如果你是数据科学/统计学/计算机专业的留学生,或在海外从事相关工作,或对自己外语水平有信心的朋友,数据派翻译组欢迎你们加入!

你能得到:提高对于数据科学前沿的认知,提高对外文新闻来源渠道的认知,海外的朋友可以和国内技术应用发展保持联系,数据派团队产学研的背景为志愿者带来好的发展机遇。

其他福利:和来自于名企的数据科学工作者,北大清华以及海外等名校学生共同合作、交流。

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
《GPU在超大规模深度学习中的发展和应用》电子版地址
GPU在超大规模深度学习中的发展和应用
0 0
为深度学习选择最好的GPU
在进行机器学习项目时,特别是在处理深度学习和神经网络时,最好使用GPU而不是CPU来处理,因为在神经网络方面,即使是一个非常基本的GPU也会胜过CPU。
0 0
预约直播 | 基于深度学习的稀疏模型训练 GPU 加速
阿里云AI技术分享会第六期《基于深度学习的稀疏模型训练 GPU 加速》将在2022年10月19日晚18:00开启直播,精彩不容错过!
0 0
PyTorch 深度学习实践 GPU版本B站 刘二大人第11讲卷积神经网络(高级篇)GPU版本
PyTorch 深度学习实践 GPU版本B站 刘二大人第11讲卷积神经网络(高级篇)GPU版本
0 0
GPU配置太麻烦?来试试Docker一键配置GPU深度学习开发环境吧
docker环境无需安装cuda、cuDNN,docker镜像安装完毕后,就都好了,一键部署好之后,可以随意迁移,再也不用环境发愁了。
0 0
一文掌握Windows平台GPU深度学习开发环境部署
本文包含显卡驱动、cuda、cuDNN深度学习加速包、anaconda、tensorflow的安装以及安装源的配置,理解了本文,还可以安装pytorch等其他开发框架。
0 0
深度剖析:针对深度学习的GPU共享
资源隔离 并行模式 分时复用 服务质量(QoS)保障 针对推理的上下文切换 合并共享 场景展望
0 0
GPU 「抗压」不行还费电,FPGA将成深度学习「新基建」!
1.GPU 矩阵运算很强,但「抗压」不行还费电 2.FPGA加持的深度学习, 推理速度和吞吐量远超GPU 3.ASIC不够灵活,FPGA 更有可能成为深度学习的「底层建筑」
0 0
指定GPU运行和训练python程序 、深度学习单卡、多卡 训练GPU设置【一文读懂】
指定GPU运行 python程序、玩转深度学习、查看 CPU 内存大小
0 0
+关注
文章
问答
来源圈子
更多
+ 订阅
文章排行榜
最热
最新
相关电子书
更多
GPU在超大规模深度学习中的发展和应用
立即下载
端到端GPU性能优化 在深度学习场景下的应用实践
立即下载
GPU在超大规模深度学习中的发展和应用
立即下载