数据分析工具PANDAS技巧-如何过滤数据

简介: 在本文中,我们将介绍在Python中过滤pandas数据帧的各种方法。 数据过滤是最常见的数据操作操作之一。 它类似于SQL中的WHERE子句,或者必须在MS Excel中使用过滤器根据某些条件选择特定行。

在本文中,我们将介绍在Python中过滤pandas数据帧的各种方法。 数据过滤是最常见的数据操作操作之一。 它类似于SQL中的WHERE子句,或者必须在MS Excel中使用过滤器根据某些条件选择特定行。 就速度而言,python执行过滤和聚合更佳。 它有很棒的库:pandas。 Pandas是在numpy包之上构建的,它是用C语言编写的,这是一种低级语言。 因此,使用pandas包进行数据操作是处理大型数据集的快速而智能的方法。

image

数据过滤的示例

它是预测建模或任何报告项目的数据准备的最初步骤之一。 它也被称为“子集数据”。 请参阅下面的一些数据过滤示例。

  • 选择在2019年1月1日之后开立帐户的所有活跃客户
  • 提取过去6个月内进行超过3笔交易的所有客户的详细信息
  • 获取在组织中工作超过3年且在过去两年中获得最高评级的员工的信息
  • 分析投诉数据并确定在过去1年内提交超过5个投诉的客户
  • 提取人均收入超过40K美元的地铁城市的详细信息

导入数据

我们将使用包含2013年从纽约出发的航班详情的数据集。该数据集有32735行和16列。下载 https://itbooks.pipipan.com/fs/18113597-393403297

表头如下:

['year', 'month', 'day', 'dep_time', 'dep_delay', 'arr_time', 'arr_delay', 'carrier', 'tailnum', 'flight', 'origin', 'dest', 'air_time', 'distance', 'hour', 'minute']

导入数据

import pandas as pd
df = pd.read_csv("nycflights.csv")

使用列值过滤

选择JetBlue Airways航班详细信息,其中包含2个字母的运营商代码B6 ,起源于JFK机场。

  • 方法1:DataFrame方式

>>> newdf = df[(df.origin == "JFK") & (df.carrier == "B6")]
>>> newdf.head()
    year  month  day  dep_time  dep_delay  arr_time  arr_delay carrier tailnum  flight origin dest  air_time  distance  hour  minute
7   2013      8   13      1920       85.0      2032       71.0      B6  N284JB    1407    JFK  IAD      48.0     228.0  19.0    20.0
10  2013      6   17       940        5.0      1050       -4.0      B6  N351JB      20    JFK  ROC      50.0     264.0   9.0    40.0
14  2013     10   21      1217       -4.0      1322       -6.0      B6  N192JB      34    JFK  BTV      46.0     266.0  12.0    17.0
23  2013      7    7      2310      105.0       201      127.0      B6  N506JB      97    JFK  DEN     223.0    1626.0  23.0    10.0
35  2013      4   12       840       20.0      1240       28.0      B6  N655JB     403    JFK  SJU     186.0    1598.0   8.0    40.0

这部分代码(df.origin == "JFK") & (df.carrier == "B6")返回True / False。 条件匹配时为真,条件不匹配时为假。 稍后它在df内传递并返回与True对应的所有行。 它返回4166行。

  • 方法2:查询函数

在pandas包中,有多种方法可以执行过滤。 上面的代码也可以像下面显示的代码一样编写。 此方法更优雅,更易读,每次指定列(变量)时都不需要提及数据框名称。


>>> newdf = df.query('origin == "JFK" & carrier == "B6"')
  • 方法3:loc函数

loc是位置术语的缩写。 所有这三种方法都返回相同的输出。 这只是一种不同的过滤行的方法。


>>> newdf = df.loc[(df.origin == "JFK") & (df.carrier == "B6")]

按行和列位置过滤Pandas数据帧

假设您想按位置选择特定的行(假设从第二行到第五行)。 我们可以使用df.iloc[ ]函数。
python中的索引从零开始。 df.iloc [0:5,]指第一至第五行(此处不包括终点第6行)。 df.iloc [0:5,]相当于df.iloc [:5,]

df.iloc[:5,] #First 5 rows
df.iloc[1:5,] #Second to Fifth row
df.iloc[5,0] #Sixth row and 1st column
df.iloc[1:5,0] #Second to Fifth row, first column
df.iloc[1:5,:5] #Second to Fifth row, first 5 columns
df.iloc[2:7,1:3] #Third to Seventh row, 2nd and 3rd column

loc根据索引标签考虑行。 而iloc根据索引中的位置考虑行,因此它只需要整数。 让我们创建一个示例数据进行说明

>>> x
  col1
9     1
8     3
7     5
6     7
0     9
1    11
2    13
3    15
4    17
5    19
>>> x.iloc[0:5]
  col1
9     1
8     3
7     5
6     7
0     9
>>> x.loc[0:5]
  col1
0     9
1    11
2    13
3    15
4    17
5    19

参考资料

按行位置和列名称过滤pandas数据帧


>>> df.loc[df.index[0:5],["origin","dest"]]
  origin dest
0    JFK  LAX
1    JFK  SJU
2    JFK  LAX
3    JFK  TPA
4    LGA  ORF
# -   讨论qq群630011153 144081101

列中选择多个值

>>> newdf = df[df.origin.isin(["JFK", "LGA"])]

不等于

>>> newdf = df.loc[(df.origin != "JFK") & (df.carrier == "B6")]
>>> pd.unique(newdf.origin)
array(['LGA', 'EWR'], dtype=object)

如何否定整个条件

>>> newdf = df[~((df.origin == "JFK") & (df.carrier == "B6"))]

选择非缺失数据

>>> newdf = df[~((df.origin == "JFK") & (df.carrier == "B6"))]

过滤Pandas Dataframe中的字符串

>>> df = pd.DataFrame({"var1": ["AA_2", "B_1", "C_2", "A_2"]})
>>> df
   var1
0  AA_2
1   B_1
2   C_2
3   A_2
>>> df[df['var1'].str[0] == 'A']
   var1
0  AA_2
3   A_2
>>> df[df['var1'].str.len()>3]
   var1
0  AA_2
>>> df[df['var1'].str.contains('A|B')]
   var1
0  AA_2
1   B_1
3   A_2
相关文章
|
9天前
|
存储 人工智能 自然语言处理
Pandas数据应用:自然语言处理
本文介绍Pandas在自然语言处理(NLP)中的应用,涵盖数据准备、文本预处理、分词、去除停用词等常见任务,并通过代码示例详细解释。同时,针对常见的报错如`MemoryError`、`ValueError`和`KeyError`提供了解决方案。适合初学者逐步掌握Pandas与NLP结合的技巧。
50 20
|
10天前
|
存储 数据挖掘 计算机视觉
Pandas数据应用:图像处理
Pandas 是一个强大的 Python 数据分析库,主要用于处理结构化数据。尽管它不是专门为图像处理设计的,但可以利用其功能辅助图像处理任务。本文介绍如何使用 Pandas 进行图像处理,包括图像读取、显示、基本操作及常见问题解决方法。通过代码案例解释如何将图像转换为 DataFrame 格式,并探讨数据类型不匹配、内存溢出和颜色通道混淆等问题的解决方案。总结中指出,虽然 Pandas 可作为辅助工具,但在实际项目中建议结合专门的图像处理库如 OpenCV 等使用。
47 18
|
4天前
|
机器学习/深度学习 存储 算法
Pandas数据应用:客户流失预测
本文介绍如何使用Pandas进行客户流失预测,涵盖数据加载、预处理、特征工程和模型训练。通过解决常见问题(如文件路径错误、编码问题、列名不一致等),确保数据分析顺利进行。特征工程中创建新特征并转换数据类型,为模型训练做准备。最后,划分训练集与测试集,选择合适的机器学习算法构建模型,并讨论数据不平衡等问题的解决方案。掌握这些技巧有助于有效应对实际工作中的复杂情况。
123 95
|
7天前
|
机器学习/深度学习 数据采集 JSON
Pandas数据应用:机器学习预处理
本文介绍如何使用Pandas进行机器学习数据预处理,涵盖数据加载、缺失值处理、类型转换、标准化与归一化及分类变量编码等内容。常见问题包括文件路径错误、编码不正确、数据类型不符、缺失值处理不当等。通过代码案例详细解释每一步骤,并提供解决方案,确保数据质量,提升模型性能。
126 88
|
18天前
|
分布式计算 数据可视化 数据挖掘
Pandas数据应用:社交媒体分析
本文介绍如何使用Pandas进行社交媒体数据分析,涵盖数据获取、预处理、探索性分析和建模的完整流程。通过API获取数据并转换为DataFrame格式,处理缺失值和数据类型转换问题。利用Matplotlib等库进行可视化,展示不同类型帖子的数量分布。针对大规模数据集提供内存优化方案,并结合TextBlob进行情感分析。最后总结常见问题及解决方案,帮助读者掌握Pandas在社交媒体数据分析中的应用。
151 96
|
1天前
|
数据采集 存储 供应链
Pandas数据应用:库存管理
本文介绍Pandas在库存管理中的应用,涵盖数据读取、清洗、查询及常见报错的解决方法。通过具体代码示例,讲解如何处理多样数据来源、格式不一致、缺失值和重复数据等问题,并解决KeyError、ValueError等常见错误,帮助提高库存管理效率和准确性。
87 72
|
12天前
|
数据采集 机器学习/深度学习 搜索推荐
Pandas数据应用:推荐系统
在数字化时代,推荐系统是互联网公司的重要组成部分,Pandas作为Python的强大数据分析库,在数据预处理和特征工程中发挥关键作用。常见问题包括缺失值、重复值处理及数据类型转换,解决方案分别为使用`fillna()`、`drop_duplicates()`和`astype()`等函数。常见报错如KeyError、ValueError和MemoryError可通过检查列名、确保数据格式正确及分块读取数据等方式解决。合理运用Pandas工具,可为构建高效推荐系统奠定坚实基础。
48 18
Pandas数据应用:推荐系统
|
5天前
|
数据采集 存储 算法
Pandas数据应用:市场篮子分析
市场篮子分析是一种用于发现商品间关联关系的数据挖掘技术,广泛应用于零售业。Pandas作为强大的数据分析库,在此领域具有显著优势。本文介绍了市场篮子分析的基础概念,如事务、项集、支持度、置信度和提升度,并探讨了数据预处理、算法选择、参数设置及结果解释中的常见问题与解决方案,帮助用户更好地进行市场篮子分析,为企业决策提供支持。
51 29
|
13天前
|
机器学习/深度学习 数据采集 自然语言处理
Pandas数据应用:情感分析
本文介绍了如何使用Pandas进行情感分析,涵盖数据准备、清洗、特征工程和模型构建。通过读取CSV文件、处理缺失值与重复项、转换文本格式,利用TF-IDF提取特征,并采用SVM等算法训练分类器。还讨论了内存不足、过拟合等问题的解决方案。旨在帮助读者掌握情感分析的基本流程与技巧。
58 35
|
6天前
|
机器学习/深度学习 BI 定位技术
Pandas数据应用:用户细分
用户细分是数据分析和商业智能中的关键步骤,通过将用户群体划分为不同子集,企业可以更精准地了解用户需求并制定营销策略。Pandas 是 Python 中常用的数据处理库,支持高效的数据操作。使用 Pandas 进行用户细分包括数据准备、清洗、特征工程、细分和结果分析等步骤。常见问题如数据类型不一致、内存不足等可通过相应方法解决。Pandas 简化了用户细分流程,帮助获取有价值的洞察。
49 24