【公共云支持】MaxCompute Spark支持交互式Zeppelin

简介: 【公共云支持】MaxCompute Spark支持交互式Zeppelin

由于安全原因,用户无法触达生产集群的网络,所以MaxCompute Spark一直没有放开 yarn-client的支持,也就是Spark-ShellSpark-SQL以及PYSPARK等交互式功能一直无法支持。最近调研了Zeppelin框架,配合MaxCompute Spark的相关特性以及组件,开发支持了Zeppelin on MaxCompute Spark来支持相对应的交互式探索需求。

步骤说明

  • 因为配置以及启动比较繁琐,用户未必会对这方面的事情感兴趣,所以我封装了一个一键启动的脚本,见 spark-zeppelin-public.sh
  • 下载脚本到本地后,运行 sh spark-zeppelin-public.sh 后,会自动下载相关组件如下

    • spark-zeppelin-public.conf
    • spark-zeppelin-public.jar
    • spark-2.3.0-odps0.32.0.tar.gz
  • 第一次运行脚本会出现以下错误,这是因为默认的spark-zeppelin-public.conf并没有配置accessId,accessKey,projectName
linxuewei:spark-zeppelin-public linxuewei$ sh spark-zeppelin-public.sh 
working dir: /Users/linxuewei/Desktop/spark-zeppelin-public
download spark-zeppelin-public.conf
download spark-zeppelin-public.jar
download spark-2.3.0-odps0.32.0.tar.gz
extract spark-2.3.0-odps0.32.0.tar.gz
export SPARK_HOME
spark-zeppelin-public.conf checking
TBD count is        3, plz check config make sure id key project is written!
config check failed, plz set id key project in spark-zeppelin-public.conf
  • 正常配置 spark-zeppelin-public.conf 之后再运行 sh spark-zeppelin-public.sh
linxuewei:spark-zeppelin-public linxuewei$ sh spark-zeppelin-public.sh 
working dir: /Users/linxuewei/Desktop/spark-zeppelin-public
export SPARK_HOME
spark-zeppelin-public.conf checking
config check passed, start spark-submit

就会启动一个MaxCompute Spark作业,等待作业执行结束之后,可以回溯日志,找到logview

http://logview.odps.aliyun.com/logview/?h=http://service.cn.maxcompute.aliyun.com/api&p=zky_test&i=20190710044052214gy6kc292&token=eXN6eFlsNmQzOFV4dUIzVEVndm9KQUtVSlVNPSxPRFBTX09CTzpwNF8yNDcwNjM5MjQ1NDg0NDc5NzksMTU2Mjk5Mjg1Mix7IlN0YXRlbWVudCI6W3siQWN0aW9uIjpbIm9kcHM6UmVhZCJdLCJFZmZlY3QiOiJBbGxvdyIsIlJlc291cmNlIjpbImFjczpvZHBzOio6cHJvamVjdHMvemt5X3Rlc3QvaW5zdGFuY2VzLzIwMTkwNzEwMDQ0MDUyMjE0Z3k2a2MyOTIiXX1dLCJWZXJzaW9uIjoiMSJ9
  • 打开 logview 点击 master-0 点击 StdOut

image.png

# 日志中的这个url,就是zeppelin server的地址了
# 直接复制粘贴到浏览器上即可访问,弹出的url会需要云账号的登录
Please visit the following url for zeppelin interaction.
http://20190710044052214gy6kc292-zeppelin.open.maxcompute.aliyun.com
Log dir doesn't exist, create /worker/zeppelin_logs/
Pid dir doesn't exist, create /worker/zeppelin_pids/
Zeppelin start [60G[[0;32m  OK  [0;39m]
  • 打开 zeppelin url 打开 Examples Notebook,有时候页面会显示endpoint not exist的日志,这是因为zeppelin还没有启动完毕的情况,稍等片刻就可以

image.png

  • 如果页面弹出一个 interpreter binding的页面,直接点击Save即可,然后再点击ToolBar上的运行所有按钮即可执行Notebook上的代码的执行

image.png

  • 从 examples 样例中我们可以看到,NoteBook支持三种语法

    • %spark 开头表示 scala 执行器 如果不写就默认是这个模式
    • %sql 开头表示 spark-sql 执行器,默认用ODPS External Catalog
    • pyspark 开头表示 pyspark 执行器,默认用我们打包好的 python2.7

问题咨询

有问题就找峰七(林学维)即可。有了这个Zeppelin,有时候我们有一些语法或者spark接口上面不清楚的就可以现在notebook上执行,然后再写进工程代码里,不用一遍一遍的提交那么没有效率了。

这个模式相对于local模式更有力的地方是,这个模式其实是真实用了yarn-cluster模式运行着的,local模式仅仅能验证语法是否正确,而zeppelin模式能以分布式的方式提供交互式查询,这个对于那种需要关注性能结果的debugging是有帮助的。

资源释放

本质上Zeppelin Server on MaxCompute Spark还是一个Spark作业,默认这个作业会存活三天,如果你想手动关闭这个作业的话,就请用odpscmd,用kill <instanceId>; 命令来停止作业释放资源吧。

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
8月前
|
人工智能 分布式计算 大数据
大数据≠大样本:基于Spark的特征降维实战(提升10倍训练效率)
本文探讨了大数据场景下降维的核心问题与解决方案,重点分析了“维度灾难”对模型性能的影响及特征冗余的陷阱。通过数学证明与实际案例,揭示高维空间中样本稀疏性问题,并提出基于Spark的分布式降维技术选型与优化策略。文章详细展示了PCA在亿级用户画像中的应用,包括数据准备、核心实现与效果评估,同时深入探讨了协方差矩阵计算与特征值分解的并行优化方法。此外,还介绍了动态维度调整、非线性特征处理及降维与其他AI技术的协同效应,为生产环境提供了最佳实践指南。最终总结出降维的本质与工程实践原则,展望未来发展方向。
415 0
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
1038 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
11月前
|
存储 分布式计算 Hadoop
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
564 79
|
SQL 机器学习/深度学习 分布式计算
Spark快速上手:揭秘大数据处理的高效秘密,让你轻松应对海量数据
【10月更文挑战第25天】本文全面介绍了大数据处理框架 Spark,涵盖其基本概念、安装配置、编程模型及实际应用。Spark 是一个高效的分布式计算平台,支持批处理、实时流处理、SQL 查询和机器学习等任务。通过详细的技术综述和示例代码,帮助读者快速掌握 Spark 的核心技能。
603 6
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
614 2
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
517 1
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
分布式计算 大数据 OLAP
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
415 1
|
分布式计算 大数据 Apache
利用.NET进行大数据处理:Apache Spark与.NET for Apache Spark
【10月更文挑战第15天】随着大数据成为企业决策和技术创新的关键驱动力,Apache Spark作为高效的大数据处理引擎,广受青睐。然而,.NET开发者面临使用Spark的门槛。本文介绍.NET for Apache Spark,展示如何通过C#和F#等.NET语言,结合Spark的强大功能进行大数据处理,简化开发流程并提升效率。示例代码演示了读取CSV文件及统计分析的基本操作,突显了.NET for Apache Spark的易用性和强大功能。
414 1
|
5月前
|
机器学习/深度学习 传感器 分布式计算
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
377 14