Elasticsearch实战 | 必要的时候,还得空间换时间!

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 我们需要基于聚合(数据处理层)的结果实现检索和聚合分析操作,如何实现更快的检索和更高效的聚合分析效果呢?

1、应用场景

实时数据流通过kafka后,根据业务需求,一部分直接借助kafka-connector入Elasticsearch不同的索引中。

另外一部分,则需要先做聚类、分类处理,将聚合出的分类结果存入ES集群的聚类索引中。如下图所示:

业务系统的分层结构可分为:接入层、数据处理层、数据存储层、接口层。
那么问题来了?

我们需要基于聚合(数据处理层)的结果实现检索和聚合分析操作,如何实现更快的检索和更高效的聚合分析效果呢?

image.png

2、方案选型

方案一:
只建立一个索引,aggs_index。
数据处理层的聚合结果存入ES中的指定索引,同时将每个聚合主题相关的数据存入每个document下面的某个field下。如下示意图所示:

image.png

方案二:
新建两个索引:aggs_index以及aggs_detail_index。
其中:
1)aggs_index存储事件列表信息。
2)aggs_detail_index存储事件关联的文章内容信息。
如下图所示:

image.png

3、方案对比

方案一优点:节省存储空间,只存储关联文章id,数据没有重复存储。
方案一缺点:检索、聚合慢,性能不能达标。
方案一后续的所有操作,都需要先遍历检索这一堆IDs,然后再进行检索、聚合分析操作。

操作实例如下(实际比这要复杂):
第一步:通过事件id,获取关联文章id列表;
第二步:基于关联文章id列表,进行检索和聚合操作。

POST  aggs_index/_search
{
  "_source": {
  "includes":[
    "title",
"abstract",
"publish_time",
"author"
    ]},
  "query":{
    "terms":{
      "_id":"["789b4cb872be00a04560d95bf13ec8f42c", 
      "792d9610b03676dc5644c2ff4db372dec4",
"817f5cff3dd0ec3564d45615f940cb7437", 
"....."]
    }
  }
}

步骤2当id数量很多时,会有如下的错误提示:

{
  "error": {
    "root_cause": [
      {
        "type": "too_many_clauses",
        "reason": "too_many_clauses: 
        maxClauseCount is set to 1024"
      },

方案二优点:分开存储,便于一个索引中进行检索、聚合分析操作。
空间换时间,极大的提升检索效率、聚合速度。
方案二缺点:同样的数据,多存储了一份。
其对应的检索操作如下:

POST  aggs_index/_search
{
  "_source": {
  "includes":[
    "title",
"abstract",
"publish_time",
"author"
    ]},
  "query":{
    "term":{
      "topic_id":"WIAEgRbI0k9s1D2JrXPC"
    }
  }
}

是真的吗?
用事实说话:
以下响应时间的单位为:ms。
方案一要在N个(N接近10)索引,每个索引近千万级别的数据中检索。

image.png

image.png

4、小结

  • 由以上图示,对比可知,方案二采取了时间换空间的策略,数据量多存储了一份,但是性能提升了10余倍。
  • 在实战开发中,我们要理性的选择存储方案,在磁盘成本日渐低廉的当下,把性能放在第一位,用户才能用的”爽“!

作者:铭毅天下
原文:https://blog.csdn.net/laoyang360/article/details/79515295

相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
8月前
elasticsearch使用 scroll 滚动分页实战实例
elasticsearch使用 scroll 滚动分页实战实例
277 0
|
6月前
|
存储 数据采集 数据处理
数据处理神器Elasticsearch_Pipeline:原理、配置与实战指南
数据处理神器Elasticsearch_Pipeline:原理、配置与实战指南
247 12
|
7月前
|
缓存 数据处理 数据安全/隐私保护
Elasticsearch索引状态管理实战指南
Elasticsearch索引状态管理实战指南
|
7月前
|
存储 索引
Elasticsearch索引之嵌套类型:深度剖析与实战应用
Elasticsearch索引之嵌套类型:深度剖析与实战应用
|
8月前
|
人工智能 自然语言处理 开发者
Langchain 与 Elasticsearch:创新数据检索的融合实战
Langchain 与 Elasticsearch:创新数据检索的融合实战
240 10
|
8月前
|
消息中间件 Java 关系型数据库
【二十】springboot整合ElasticSearch实战(万字篇)
【二十】springboot整合ElasticSearch实战(万字篇)
1195 47
|
7月前
|
存储 JSON 搜索推荐
Springboot2.x整合ElasticSearch7.x实战(三)
Springboot2.x整合ElasticSearch7.x实战(三)
57 0
|
7月前
|
存储 自然语言处理 关系型数据库
Springboot2.x整合ElasticSearch7.x实战(二)
Springboot2.x整合ElasticSearch7.x实战(二)
57 0
|
7月前
|
搜索推荐 数据可视化 Java
Springboot2.x整合ElasticSearch7.x实战(一)
Springboot2.x整合ElasticSearch7.x实战(一)
62 0
|
8月前
|
存储 缓存 监控
干货 | Elasticsearch 8.X 性能优化实战
干货 | Elasticsearch 8.X 性能优化实战
737 2