比PCA降维更高级——(R/Python)t-SNE聚类算法实践指南

简介: 本文介绍t-SNE聚类算法,分析其基本原理。并从精度上与PCA等其它降维算法进行比较分析,结果表明t-SNE算法更优越,本文最后给出了R、Python实现的示例以及常见问题。t-SNE算法用于自然语音处理、图像处理等领域很有研究前景。

更多深度文章,请关注:https://yq.aliyun.com/cloud

作者介绍:Saurabh.jaju2

  Saurabh是一名数据科学家和软件工程师,熟练分析各种数据集和开发智能应用程序。他目前正在加州大学伯克利分校攻读信息和数据科学硕士学位,热衷于开发基于数据科学的智能资源管理系统。

Linkedinhttps://in.linkedin.com/in/saurabh-jaju

Github: https://github.com/saurabhjaju2

介绍

    许多数据科学家经常面对的问题之一:假设有一个包含数百个特征(变量)的数据集,对数据所属的域没有任何了解,需要对该数据集识别隐藏状态、探索并分析。本文将介绍一种非常强大的方法来解决该问题。

关于PCA

  现实中大多数人会使用PCA进行降维和可视化,但为什么不选择比PCA更先进的东西呢?关于PCA的介绍可以阅读该文献。本文讲解比PCA1933)更有效的算法t-SNE2008)。

本文内容

1 什么是t-SNE?

2 什么是降维?

3 t-SNE如何在维数降低算法空间中拟合

4 t-SNE算法的细节

5 t-SNE实际上是做什么?

6 用例

7 t-SNE与其他降维算法相比

8 示例实现

        R语言

         Python语言

9 应用方面

   数据科学家

   机器学习骇客

   数据科学爱好者

10 常见错误

1 什么是t-SNE

 (t-SNE)t分布随机邻域嵌入 是一种用于探索高维数据的非线性降维算法。它将多维数据映射到适合于人类观察的两个或多个维度。

46439e36cf281fdeb199dcb16c2b723b9a08194b

2 什么是降维?

   简而言之,降维就是用2维或3维表示多维数据(彼此具有相关性的多个特征数据)的技术利用降维算法,可以显式地表现数据。

3 t-SNE如何在降维算法空间中拟合

   常用的降维算法有:

1 PCA(线性)

2 t-SNE(非参数/非线性)

3 Sammon映射(非线性)

4 Isomap(非线性)

5 LLE(非线性)

6 CCA(非线性)

7 SNE(非线性)

8 MVU(非线性)

9 拉普拉斯特征图(非线性)

   只需要研究上述算法中的两种——PCAt-SNE

PCA的局限性

  PCA是一种线性算法,它不能解释特征之间的复杂多项式关系。而t-SNE是基于在邻域图上随机游走的概率分布来找到数据内的结构。

  线性降维算法的一个主要问题是不相似的数据点放置在较低维度表示为相距甚远。但为了在低维度非线性流形表示高维数据,相似数据点必须表示为非常靠近,这不是线性降维算法所做的。

4 t-SNE算法的细节

 4.1 算法

  步骤1

随机邻接嵌入(SNE)通过将数据点之间的高维欧几里得距离转换为表示相似性的条件概率而开始,数据点xixj之间的条件概率pj|i由下式给出:

7865f9e80ece98a016f0e310ea8fa8e14c3a9db9

其中σi是以数据点xi为中心的高斯方差。

  步骤2

  对于高维数据点xixj的低维对应点yiyj而言,可以计算类似的条件概率qj|i

      def3073e7fff9a1f12327ef0914efb8a889da3b7

SNE试图最小化条件概率的差异。

  步骤3

    为了测量条件概率差的和最小值,SNE使用梯度下降法最小化KL距离。而SNE的代价函数关注于映射中数据的局部结构,优化该函数是非常困难的,而t-SNE采用重尾分布,以减轻拥挤问题和SNE的优化问题。

  步骤4

   定义困惑度:

51f1f11d693d4b520d5d74182ccb79e9dd39a8a1

   其中H(Pi)香农熵

    160b3cbd31d9015af253dc1ee1d260d27f47d363

4.2 时间和空间复杂性

   算法计算对应的是条件概率,并试图最小化较高和较低维度的概率差之和,这涉及大量的计算,对系统资源要求高。t-SNE的复杂度随着数据点数量有着时间和空间二次方。

5 t-SNE实际上是做什么?

t-SNE非线性降维算法通过基于具有多个特征的数据点的相似性识别观察到的簇来在数据中找到模式。本质上是一种降维和可视化技术。另外t-SNE的输出可以作为其他分类算法的输入特征。

6用例

 t-SNE几乎可用于所有高维数据集,广泛应用于图像处理,自然语言处理,基因组数据和语音处理。实例有:面部表情识别[2]、识别肿瘤亚群[3]、使用wordvec进行文本比较[4]等。

7 t-SNE与其他降维算法相比

  基于所实现的精度t-SNEPCA和其他线性降维模型相比,结果表明t-SNE能够提供更好的结果。这是因为算法定义了数据的局部和全局结构之间的软边界。

8示例实现

  MNIST手写数字数据库上实现t-SNE算法。

 1 R语言

  “Rtsne包在R中具有t-SNE的实现。Rtsne包可以使用在R控制台中键入的以下命令安装在R中:

 

    超参数调整

725ecc927935b13a2f9859a69c0e36cb9139577c

 代码

  MNIST数据可从MNIST网站下载,并可转换为具有少量代码的csv文件。

## calling the installed package
train<‐ read.csv(file.choose()) ## Choose the train.csv file downloaded from the link above
library(Rtsne)
## Curating the database for analysis with both t‐SNE and PCA
Labels<‐train$label
train$label<‐as.factor(train$label)
## for plotting
colors = rainbow(length(unique(train$label)))
names(colors) = unique(train$label)
## Executing the algorithm on curated data
tsne <‐ Rtsne(train[,‐1], dims = 2, perplexity=30, verbose=TRUE, max_iter = 500)
exeTimeTsne<‐ system.time(Rtsne(train[,‐1], dims = 2, perplexity=30, verbose=TRUE, max_iter = 50
0))
## Plotting
plot(tsne$Y, t='n', main="tsne")
text(tsne$Y, labels=train$label, col=colors[train$label])

 实现时间

  6242f88cd410239964ad1bdc3fe8564fc39f0bcd

可以看出,与PCA相比,t-SNE在相同样本大小的数据上执行需要相当长的时间。

 解释结果

  以下图用于探索性分析。输出x和y坐标以及成本可以用作分类算法中的特征。

f7adb3c74a84ba93145761d39e280574950e5a02

d0414d3247882ae47781c11549cdfc629bec7f89

2 Python语言

   t-SNE算法可以从sklearn包中访问。

超参数调整

  fce0dc4f4df4e8c9f523dfb0bc3b9e78ed621054

代码

    以下代码来自sklearn网站上的sklearn示例。

 代码1

实现时间

## importing the required packages
from time import time
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import offsetbox
from sklearn import (manifold, datasets, decomposition, ensemble,
discriminant_analysis, random_projection)
## Loading and curating the data
digits = datasets.load_digits(n_class=10)
X = digits.data
y = digits.target
n_samples, n_features = X.shape
n_neighbors = 30
## Function to Scale and visualize the embedding vectors
def plot_embedding(X, title=None):
x_min, x_max = np.min(X, 0), np.max(X, 0)
X = (X ‐ x_min) / (x_max ‐ x_min)
plt.figure()
ax = plt.subplot(111)
for i in range(X.shape[0]):
plt.text(X[i, 0], X[i, 1], str(digits.target[i]),
color=plt.cm.Set1(y[i] / 10.),
fontdict={'weight': 'bold', 'size': 9})
if hasattr(offsetbox, 'AnnotationBbox'):
## only print thumbnails with matplotlib > 1.0
shown_images = np.array([[1., 1.]]) # just something big
for i in range(digits.data.shape[0]):
dist = np.sum((X[i] ‐ shown_images) ** 2, 1)
if np.min(dist) < 4e‐3:
## don't show points that are too close
continue
shown_images = np.r_[shown_images, [X[i]]]
imagebox = offsetbox.AnnotationBbox(
offsetbox.OffsetImage(digits.images[i], cmap=plt.cm.gray_r),
X[i])
ax.add_artist(imagebox)
plt.xticks([]), plt.yticks([])
if title is not None:
plt.title(title)
#‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
## Plot images of the digits
n_img_per_row = 20
img = np.zeros((10 * n_img_per_row, 10 * n_img_per_row))
for i in range(n_img_per_row):
ix = 10 * i + 1
for j in range(n_img_per_row):
iy = 10 * j + 1
img[ix:ix + 8, iy:iy + 8] = X[i * n_img_per_row + j].reshape((8, 8))
plt.imshow(img, cmap=plt.cm.binary)
plt.xticks([])
plt.yticks([])
plt.title('A selection from the 64‐dimensional digits dataset')
## Computing PCA
print("Computing PCA projection")
t0 = time()
X_pca = decomposition.TruncatedSVD(n_components=2).fit_transform(X)
plot_embedding(X_pca,
"Principal Components projection of the digits (time %.2fs)" %
(time() ‐ t0))
## Computing t‐SNE
print("Computing t‐SNE embedding")
tsne = manifold.TSNE(n_components=2, init='pca', random_state=0)
t0 = time()
X_tsne = tsne.fit_transform(X)
plot_embedding(X_tsne,
"t‐SNE embedding of the digits (time %.2fs)" %
(time() ‐ t0))
plt.show()

116a56b7db93ebc18b3c34f0003e0a1f6bf1f5a9

468bdfdb8d8163443c8a338717b2519cccb27d72

9 应用方面

9.1数据科学家

对于数据科学家来说,使用t-SNE的主要问题是算法的黑盒类型性质。使用该算法的最佳方法是将其用于探索数据分析。

9.2机器学习骇客

将数据集缩减为23维,并使用非线性堆栈器将其堆叠。可以使用XGboost提高t-SNE向量以获得更好的结果。

9.3数据科学爱好者

对于开始使用数据科学的数据科学爱好者来说,这种算法在研究和性能增强方面提供了最好的机会。针对各种NLP问题和图像处理应用方面实施t-SNE的研究是一个尚未开发的领域。

10常见错误

以下是在解释 t-SNE 的结果时要避免的几个常见错误:

1 为了使算法正确执行,困惑度应小于点的数量。一般设置为5-50

2 具有相同超参数的不同运行可能产生不同的结果。

3 任何t-SNE图中的簇大小不得用于标准偏差,色散或任何其他类似的评估。

4 簇之间的距离可以改变。一个茫然性不能优化所有簇的距离。

5 可以在随机噪声中找到模式。

6 不同的困惑水平可以观察到不同的簇形状。

7 不能基于单个t-SNE图进行分析拓扑,在进行任何评估之前必须观察多个图。

 数十款阿里云产品限时折扣中,赶紧点击领劵开始云上实践吧!

本文由北邮@爱可可-爱生活老师推荐,阿里云云栖社区组织翻译。

文章原标题《Comprehensive Guide on t-SNE algorithm with implementation in R & Python》,作者:Saurabh,译者:海棠

文章为简译,更为详细的内容,请查看原文

 

相关文章
|
16天前
|
机器学习/深度学习 算法 TensorFlow
动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目
动物识别系统。本项目以Python作为主要编程语言,并基于TensorFlow搭建ResNet50卷积神经网络算法模型,通过收集4种常见的动物图像数据集(猫、狗、鸡、马)然后进行模型训练,得到一个识别精度较高的模型文件,然后保存为本地格式的H5格式文件。再基于Django开发Web网页端操作界面,实现用户上传一张动物图片,识别其名称。
47 1
动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目
|
16天前
|
机器学习/深度学习 人工智能 算法
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
植物病害识别系统。本系统使用Python作为主要编程语言,通过收集水稻常见的四种叶片病害图片('细菌性叶枯病', '稻瘟病', '褐斑病', '稻瘟条纹病毒病')作为后面模型训练用到的数据集。然后使用TensorFlow搭建卷积神经网络算法模型,并进行多轮迭代训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地模型文件。再使用Django搭建Web网页平台操作界面,实现用户上传一张测试图片识别其名称。
66 21
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
|
16天前
|
机器学习/深度学习 人工智能 算法
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
鸟类识别系统。本系统采用Python作为主要开发语言,通过使用加利福利亚大学开源的200种鸟类图像作为数据集。使用TensorFlow搭建ResNet50卷积神经网络算法模型,然后进行模型的迭代训练,得到一个识别精度较高的模型,然后在保存为本地的H5格式文件。在使用Django开发Web网页端操作界面,实现用户上传一张鸟类图像,识别其名称。
60 12
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
|
15天前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
44 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
11天前
|
机器学习/深度学习 人工智能 算法
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集("体育类", "财经类", "房产类", "家居类", "教育类", "科技类", "时尚类", "时政类", "游戏类", "娱乐类"),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
24 1
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
|
27天前
|
前端开发 搜索推荐 算法
中草药管理与推荐系统Python+Django网页界面+推荐算法+计算机课设系统+网站开发
中草药管理与推荐系统。本系统使用Python作为主要开发语言,前端使用HTML,CSS,BootStrap等技术和框架搭建前端界面,后端使用Django框架处理应用请求,使用Ajax等技术实现前后端的数据通信。实现了一个综合性的中草药管理与推荐平台。具体功能如下: - 系统分为普通用户和管理员两个角色 - 普通用户可以登录,注册、查看物品信息、收藏物品、发布评论、编辑个人信息、柱状图饼状图可视化物品信息、并依据用户注册时选择的标签进行推荐 和 根据用户对物品的评分 使用协同过滤推荐算法进行推荐 - 管理员可以在后台对用户和物品信息进行管理编辑
57 12
中草药管理与推荐系统Python+Django网页界面+推荐算法+计算机课设系统+网站开发
|
9天前
|
大数据 UED 开发者
实战演练:利用Python的Trie树优化搜索算法,性能飙升不是梦!
在数据密集型应用中,高效搜索算法至关重要。Trie树(前缀树/字典树)通过优化字符串处理和搜索效率成为理想选择。本文通过Python实战演示Trie树构建与应用,显著提升搜索性能。Trie树利用公共前缀减少查询时间,支持快速插入、删除和搜索。以下为简单示例代码,展示如何构建及使用Trie树进行搜索与前缀匹配,适用于自动补全、拼写检查等场景,助力提升应用性能与用户体验。
27 2
|
12天前
|
算法 Python
震惊!Python 算法设计背后,时间复杂度与空间复杂度的惊天秘密大起底!
在 Python 算法设计中,理解并巧妙运用时间复杂度和空间复杂度的知识,是实现高效、优雅代码的必经之路。通过不断地实践和优化,我们能够在这两个因素之间找到最佳的平衡点,创造出性能卓越的程序。
28 4
|
13天前
|
算法 搜索推荐 开发者
别再让复杂度拖你后腿!Python 算法设计与分析实战,教你如何精准评估与优化!
在 Python 编程中,算法的性能至关重要。本文将带您深入了解算法复杂度的概念,包括时间复杂度和空间复杂度。通过具体的例子,如冒泡排序算法 (`O(n^2)` 时间复杂度,`O(1)` 空间复杂度),我们将展示如何评估算法的性能。同时,我们还会介绍如何优化算法,例如使用 Python 的内置函数 `max` 来提高查找最大值的效率,或利用哈希表将查找时间从 `O(n)` 降至 `O(1)`。此外,还将介绍使用 `timeit` 模块等工具来评估算法性能的方法。通过不断实践,您将能更高效地优化 Python 程序。
30 4
|
11天前
|
算法 程序员 Python
程序员必看!Python复杂度分析全攻略,让你的算法设计既快又省内存!
在编程领域,Python以简洁的语法和强大的库支持成为众多程序员的首选语言。然而,性能优化仍是挑战。本文将带你深入了解Python算法的复杂度分析,从时间与空间复杂度入手,分享四大最佳实践:选择合适算法、优化实现、利用Python特性减少空间消耗及定期评估调整,助你写出高效且节省内存的代码,轻松应对各种编程挑战。
22 1
下一篇
无影云桌面