阿里开源!轻量级深度学习端侧推理引擎 MNN

简介: 阿里妹导读:近日,阿里正式开源轻量级深度学习端侧推理引擎“MNN”。AI科学家贾扬清如此评价道:“与 Tensorflow、Caffe2 等同时覆盖训练和推理的通用框架相比,MNN 更注重在推理时的加速和优化,解决在模型部署的阶段的效率问题,从而在移动端更高效地实现模型背后的业务。

阿里妹导读:近日,阿里正式开源轻量级深度学习端侧推理引擎“MNN”。

AI科学家贾扬清如此评价道:“与 Tensorflow、Caffe2 等同时覆盖训练和推理的通用框架相比,MNN 更注重在推理时的加速和优化,解决在模型部署的阶段的效率问题,从而在移动端更高效地实现模型背后的业务。这和服务器端 TensorRT 等推理引擎的想法不谋而合。在大规模机器学习应用中,考虑到大规模的模型部署,机器学习的推理侧计算量往往是训练侧计算量的十倍以上,所以推理侧的优化尤其重要。”

MNN背后的技术框架如何设计?未来有哪些规划?今天一起来深入了解。

1、MNN是什么?

image

MNN 是一个轻量级的深度学习端侧推理引擎,核心解决深度神经网络模型在端侧推理运行问题,涵盖深度神经网络模型的优化、转换和推理。目前,MNN已经在手淘、手猫、优酷、聚划算、UC、飞猪、千牛等 20 多个 App 中使用,覆盖直播、短视频、搜索推荐、商品图像搜索、互动营销、权益发放、安全风控等场景,每天稳定运行上亿次。此外,菜鸟自提柜等 IoT 设备中也有应用。在 2018 年双十一购物节中,MNN 在天猫晚会笑脸红包、扫一扫、明星猜拳大战等场景中使用。

该项目已经在 Github 开源,关注“阿里技术”官方公众号,并在对话框内回复“MNN”,即可获得 Github 下载链接、了解更多详情。

2、MNN的优势

MNN 负责加载网络模型,推理预测返回相关结果,整个推理过程可以分为模型的加载解析、计算图的调度、在异构后端上高效运行。MNN 具有通用性、轻量性、高性能、易用性的特征:

通用性:

  • 支持 Tensorflow、Caffe、ONNX 等主流模型格式,支持 CNN、RNN、GAN 等常用网络;
  • 支持 86 个 TensorflowOp、34 个 CaffeOp ;各计算设备支持的 MNN Op 数:CPU 71 个,Metal 55 个,OpenCL 40 个,Vulkan 35 个;
  • 支持 iOS 8.0+、Android 4.3+ 和具有POSIX接口的嵌入式设备;
  • 支持异构设备混合计算,目前支持 CPU 和 GPU,可以动态导入 GPU Op 插件,替代 CPU Op 的实现;

轻量性:

  • 针对端侧设备特点深度定制和裁剪,无任何依赖,可以方便地部署到移动设备和各种嵌入式设备中;
  • iOS 平台上,armv7+arm64 静态库大小 5MB 左右,链接生成可执行文件增加大小 620KB 左右,metallib 文件 600KB 左右;
  • Android 平台上,so 大小 400KB 左右,OpenCL 库 400KB 左右,Vulkan 库 400KB 左右;

高性能:

  • 不依赖任何第三方计算库,依靠大量手写汇编实现核心运算,充分发挥 ARM CPU 的算力;
  • iOS 设备上可以开启 GPU 加速(Metal),支持iOS 8.0以上版本,常用模型上快于苹果原生的 CoreML;
  • Android 上提供了 OpenCL、Vulkan、OpenGL 三套方案,尽可能多地满足设备需求,针对主流 GPU(Adreno和Mali)做了深度调优;
  • 卷积、转置卷积算法高效稳定,对于任意形状的卷积均能高效运行,广泛运用了 Winograd 卷积算法,对 3x3 -> 7x7 之类的对称卷积有高效的实现;
  • 针对 ARM v8.2 的新架构额外作了优化,新设备可利用半精度计算的特性进一步提速;

易用性:

  • 完善的文档和实例;
  • 有高效的图像处理模块,覆盖常见的形变、转换等需求,一般情况下,无需额外引入 libyuv 或 opencv 库处理图像;
  • 支持回调机制,方便提取数据或者控制运行走向;
  • 支持运行网络模型中的部分路径,或者指定 CPU 和 GPU 间并行运行;

3、MNN核心介绍

3.1 模块设计

image

如上图所示,MNN 可以分为 Converter 和 Interpreter 两部分。

Converter 由 Frontends 和 Graph Optimize 构成。前者负责支持不同的训练框架,MNN 当前支持 Tensorflow(Lite)、Caffe 和 ONNX;后者通过算子融合、算子替代、布局调整等方式优化图。

Interpreter 由 Engine 和 Backends 构成。前者负责模型的加载、计算图的调度;后者包含各计算设备下的内存分配、Op 实现。在 Engine 和 Backends 中,MNN应用了多种优化方案,包括在卷积和反卷积中应用 Winograd 算法、在矩阵乘法中应用 Strassen 算法、低精度计算、Neon 优化、手写汇编、多线程优化、内存复用、异构计算等。

3.2 性能比较

采用业务常用的 MobileNet、SqueezeNet 和主流开源框架进行比较,结果如下图:

image

MNN 相比于 NCNN、Mace、Tensorflow Lite、Caffe2 都有 20% 以上的优势。我们其实更加聚焦在内部使用的业务模型优化上,针对人脸检测等模型进行深入优化,iPhone6 可以达到单帧检测 5ms 左右。

注:Mace、Tensorflow Lite、Caffe2 均使用截止 2019 年 3 月 1 日 GitHub 代码仓库的 master 分支;NCNN 由于编译问题采用 20181228 Release 预编译库。

4、MNN的开源历史

4.1 为什么要做端侧推理?

随着手机算力的不断提升,以及深度学习的快速发展,特别是小网络模型不断成熟,原本在云端执行的推理预测就可以转移到端上来做。端智能即在端侧部署运行 AI 算法,相比服务端智能,端智能具有低延时、兼顾数据隐私、节省云端资源等优势。目前端智能正逐渐变为趋势,从业界来看,它已经在 AI 摄像、视觉特效等场景发挥了巨大价值。

手淘作为电商的超级 App ,业务形态丰富,拍立淘、直播短视频、互动营销、试妆、个性化推荐搜索等业务场景都有端智能诉求,结合端智能能力,可以给用户带来新的交互体验,助力业务创新突破。

一般来说,端侧深度学习的应用可以分成如下几个阶段:

image

  • 模型训练阶段,主要解决模型训练,利用标注数据训练出对应的模型文件。面向端侧设计模型时,需要考虑模型大小和计算量;
  • 模型压缩阶段,主要优化模型大小,可以通过剪枝、量化等手段降低模型大小,以便在端上使用;
  • 模型部署阶段,主要实现模型部署,包括模型管理和部署、运维监控等;
  • 端侧推理阶段,主要完成模型推理,即加载模型,完成推理相关的所有计算;

由上可知,端侧推理引擎是端智能应用的核心模块,需要在有限算力、有限内存等限制下,高效地利用资源,快速完成推理。可以说,端侧推理引擎实现的优劣,直接决定了算法模型能否在端侧运行,决定了业务能否上线。因此,我们需要一个端侧推理引擎,一个优秀的端侧推理引擎。

4.2 为什么要开源 MNN?

在 2017 年初,我们在开始引擎研发之前,重点调研了系统方案和开源方案,从通用性、轻量性、高性能、安全性等方面深入分。CoreML 是 Apple 的系统框架,MLKit 和 NNAPI 是 Android 的系统框架,系统框架最大的优势是轻量性 —— 在包大小方面相对宽裕。而最大的劣势是通用性,CoreML 需要 iOS 11+,MLKit 和NNAPI 需要 Android 8.1+,可以覆盖的机型非常有限,同时难以支持嵌入式设备的使用场景。此外,系统框架支持的网络类型、Op 类型都较少,可拓展性又较差,还未能充分利用设备的算力,加之存在模型安全方面的问题。综上种种,系统框架不是一个很好的选择。开源方案中 Tensorflow Lite 宣而未发,Caffe 较成熟但不是面向端侧场景设计和开发的,NCNN 则刚刚发布还不够成熟。总的来说,我们找不到一套面向不同训练框架,不同部署环境,简单高效安全的端侧推理引擎。

因此,我们希望提供面向不同业务算法场景,不同训练框架,不同部署环境的简单、高效、安全的端侧推理引擎 MNN 。能够抹平 Android 和 iOS 的差异,碎片设备之间的差异,不同训练框架的差异,实现快速的在端侧部署运行,并且能够根据业务模型进行 OP 灵活添加和 CPU/GPU 等异构设备深入性能优化。

随着时间推移,NCNN、Tensorflow Lite、Mace、Anakin 等逐步升级和开源,给与我们很好的输入和借鉴。我们随着业务需求也在不断迭代和优化,并且经历了双十一考验,已经相对成熟和完善,所以开源给社区,希望给应用和 IoT 开发者贡献我们的力量。

5、应用场景

目前,MNN 已经在手淘、猫客、优酷、聚划算、UC、飞猪、千牛等20+集团App中集成,在拍立淘、直播短视频、互动营销、实人认证、试妆、搜索推荐等场景使用,每天稳定运行上亿次。2018年双十一购物节中,MNN 也在猫晚笑脸红包、扫一扫明星猜拳大战等场景中使用。

image


拍立淘是在手淘里面的一个图像搜索和识别产品,从14年首次上线经过不断迭代发展目前已经成长为 UV 超过千万的应用。其中的技术也在不断迭代更新,从最早的拍照上传图片云端识别,演进到目前在端上做物体识别和抠图再上传云端识别,有效地提升了用户体验同时节省了服务端计算成本。针对一些简单的物体分类万物识别和 logo 识别,目前也已经支持直接通过端上的模型进行实时识别。

笑脸红包是18年双十一猫晚开场的第一个节目,这个玩法是基于实时人脸检测和表情识别能力做的,相比之前各种通过屏幕触控的交互玩法,这个活动通过摄像头实时人脸检测算法实现从传统触控交互玩法到自然交互玩法的跨越,给用户带来新的用户体验。

集五福是19年春节的活动,也是手淘第一次通过扫年货的方式加入到这个活动中来。通过扫一扫商品识别能力,识别红色年货,除了福卡之外,还能得到羽绒被、五粮液、茅台、帝王蟹等实物大奖和猫超、天猫精灵等无门槛优惠券,让家里的年货变成下金蛋的“母鸡”。

6、Roadmap

我们计划每两个月 Release 一个稳定版本。当前规划如下:

模型优化方面:

  1. 完善 Converter 图优化
  2. 完善对量化的支持,增加对稀疏的支持

调度优化方面:

  1. 增加模型 flops 统计
  2. 针对设备硬件特性动态调度运行策略

计算优化:

  1. 现有 Backend 持续优化(CPU/OpenGL/OpenCL/Vulkan/Metal)
  2. 优化 Arm v8.2 Backend,支持量化模型
  3. 使用 NNAPI,增加 NPU Backend
  4. 应用快速矩阵乘法、Winograd 算法优化性能

其他:

  1. 文档和示例
  2. 完善 test、benchmark 相关工具
  3. 支持更多 Op

原文发布时间为:2019-05-07
本文作者: MNN
本文来自云栖社区合作伙伴“ 阿里技术”,了解相关信息可以关注“阿里技术”。

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
机器学习/深度学习 人工智能 Cloud Native
高性能深度学习推理平台 OpenPPL 正式开源!
高性能深度学习推理平台 OpenPPL 正式开源!
2218 0
|
机器学习/深度学习 算法 openCL
高效、轻量的深度学习框架MNN
MNN是一个高效、轻量的深度学习框架。
高效、轻量的深度学习框架MNN
|
机器学习/深度学习 数据采集 人工智能
【技术揭秘】高性能粤语语音识别模型构建方案
随着人工智能技术的飞速发展,语音识别(Automatic SpeechRecognition)的应用越来越广泛,对于多语种多口音语音识别的需求也在日渐增加。虽然语音识别系统的基本原理和框架是不受限于语种的,在建立一个新语种的ASR模型时,还是需要结合到语言本身的特点,才能得到较好的效果。
【技术揭秘】高性能粤语语音识别模型构建方案
|
9天前
|
人工智能 安全 PyTorch
SPDL:Meta AI 推出的开源高性能AI模型数据加载解决方案,兼容主流 AI 框架 PyTorch
SPDL是Meta AI推出的开源高性能AI模型数据加载解决方案,基于多线程技术和异步事件循环,提供高吞吐量、低资源占用的数据加载功能,支持分布式系统和主流AI框架PyTorch。
43 10
SPDL:Meta AI 推出的开源高性能AI模型数据加载解决方案,兼容主流 AI 框架 PyTorch
|
8天前
|
机器学习/深度学习 人工智能 Android开发
《C++与 MXNet:分布式训练与移动端部署的卓越融合》
MXNet是一款高效灵活的深度学习框架,尤其在分布式训练和移动端部署方面表现突出。基于C++的MXNet通过高效的通信机制和扩展性,支持大规模数据处理及复杂模型训练,同时其轻量化设计和性能优化使其成为移动端智能应用的理想选择。
68 29
|
14天前
|
机器学习/深度学习 人工智能 调度
【AI系统】推理引擎架构
本文详细介绍了推理引擎的基本概念、特点、技术挑战及架构设计。推理引擎作为 AI 系统中的关键组件,负责将训练好的模型部署到实际应用中,实现智能决策和自动化处理。文章首先概述了推理引擎的四大特点:轻量、通用、易用和高效,接着探讨了其面临的三大技术挑战:需求复杂性与程序大小的权衡、算力需求与资源碎片化的矛盾、执行效率与模型精度的双重要求。随后,文章深入分析了推理引擎的整体架构,包括优化阶段的模型转换工具、模型压缩、端侧学习等关键技术,以及运行阶段的调度层、执行层等核心组件。最后,通过具体的开发流程示例,展示了如何使用推理引擎进行模型的加载、配置、数据预处理、推理执行及结果后处理。
38 0
|
14天前
|
人工智能 PyTorch 算法框架/工具
【AI系统】昇腾推理引擎 MindIE
本文详细介绍华为昇腾推理引擎 MindIE,涵盖其基本介绍、关键功能特性及三大组件:MindIE-Service、MindIE-Torch 和 MindIE-RT。文章深入探讨了各组件在服务化部署、大模型推理和推理运行时方面的功能和应用场景,旨在帮助读者全面了解 MindIE 如何支持 AI 业务的高效运行和模型的快速部署。
33 0
|
4月前
|
人工智能 自然语言处理 Swift
"轻量级微调推理框架SWIFT:大模型时代的速度革命,让你秒变AI部署高手!"
【8月更文挑战第17天】随着AI技术的发展,大模型如GPT-3和BERT引领风潮,但其部署与推理速度面临挑战。为此,魔搭社区推出了SWIFT(Simple Weight-Integrated Fine-Tuning)框架,它采用轻量级微调技术,实现模型参数压缩与加速,确保大模型能在移动端和边缘设备上高效运行。SWIFT具备四大特点:创新微调方法减少训练参数;内置优化策略提高推理速度;跨平台支持便于部署;兼容主流预训练模型。通过示例可见,从加载预训练模型到模型的微调、评估及导出,SWIFT简化了工作流程,降低了大模型的应用门槛,促进了AI技术的实际应用。
517 3
|
7月前
|
测试技术 PyTorch 算法框架/工具
魔搭开源推理引擎 DashInfer,助力CPU服务器解锁大模型超强推理
ModelScope推出了预训练大语言模型(LLM)推理引擎DashInfer,采用C++ Runtime编写,提供C++和Python语言接口,具有生产级别的高性能表现,适用于多种CPU架构,包括x86和ARMv9。DashInfer支持连续批处理(Continuous Batching)和多NUMA推理(NUMA-Aware),能够充分利用服务器级CPU的算力,为推理14B及以下的LLM模型提供更多的硬件选择。该项工作已开源。
|
7月前
|
人工智能 弹性计算 PyTorch
【Hello AI】安装和使用AIACC-ACSpeed-分布式训练场景的通信优化库
AIACC-ACSpeed专注于分布式训练场景的通信优化库,通过模块化的解耦优化设计,实现了分布式训练在兼容性、适用性和性能加速等方面的升级。本文为您介绍安装和使用AIACC-ACSpeed v1.1.0的方法。
下一篇
DataWorks