【Hello AI】安装和使用AIACC-ACSpeed-分布式训练场景的通信优化库

简介: AIACC-ACSpeed专注于分布式训练场景的通信优化库,通过模块化的解耦优化设计,实现了分布式训练在兼容性、适用性和性能加速等方面的升级。本文为您介绍安装和使用AIACC-ACSpeed v1.1.0的方法。

AIACC-ACSpeed专注于分布式训练场景的通信优化库,通过模块化的解耦优化设计,实现了分布式训练在兼容性、适用性和性能加速等方面的升级。本文为您介绍安装和使用AIACC-ACSpeed v1.1.0的方法。

前提条件

已创建阿里云GPU实例,且GPU实例需满足以下要求:

  • 操作系统为Alibaba Cloud Linux、CentOS 7.x、Ubuntu 16.04或以上版本。
  • 已安装NVIDIA Driver和CUDA 10.0或以上版本。

支持的版本列表

AIACC-ACSpeed(本文简称ACSpeed)v1.1.0支持PyTorch、Cuda、Python以及NGC镜像版本,版本对应关系如下所示。

类型

PyTorch Version

CUDA Version

Python Version

官方PyTorch版本

1.6.0

10.1

3.6/3.7/3.8

1.8.0

10.1/10.2/11.1

3.6/3.7/3.8/3.9

1.8.1

10.1/10.2/11.1

3.6/3.7/3.8/3.9

1.9.0

10.2/11.1

3.6/3.7/3.8/3.9

1.9.1

10.2/11.1

3.6/3.7/3.8/3.9

1.10.0

10.2/11.1/11.3

3.6/3.7/3.8/3.9

1.10.1

10.2/11.1/11.3

3.6/3.7/3.8/3.9

1.10.2

10.2/11.1/11.3

3.6/3.7/3.8/3.9

1.11.0

10.2/11.3

3.7/3.8/3.9/3.10

1.12.0

10.2/11.3/11.6

3.7/3.8/3.9/3.10

1.12.1

10.2/11.3/11.6

3.7/3.8/3.9/3.10

1.13.0

11.6

3.7/3.8/3.9/3.10

1.13.1

11.6

3.7/3.8/3.9/3.10

2.0.0

11.7

3.7/3.8/3.9/3.10

NGC镜像版本(nvcr.io/nvidia/pytorch:22.06-py3)

1.13.0a0

11.7

3.8

安装AIACC-ACSpeed

  1. 执行如下命令,下载ACSpeed v1.1.0。
wget https://ali-perseus-release.oss-cn-huhehaote.aliyuncs.com/ACSpeed/acspeed-1.1.0.tar.gz
  1. 执行如下命令,安装ACSpeed v1.1.0。
pip install acspeed-1.1.0.tar.gz

使用AIACC-ACSpeed

使用ACSpeed时,通过适配代码来快速启用ACSpeed即可。

您仅需在训练代码主函数对应的文件上增加一行import命令导入ACSpeed代码即可,一般可以选择在torch导入的地方。命令行示例如下所示:

import torch
import acspeed

好啦!小弹的分享到此为止。我们更欢迎您分享您对阿里云产品的设想、对功能的建议或者各种吐槽,请扫描提交问卷并获得社区积分或精美礼品一份。https://survey.aliyun.com/apps/zhiliao/P4y44bm_8

【扫码填写上方调研问卷】

欢迎每位来到弹性计算的开发者们来反馈问题哦~

相关文章
|
4月前
|
人工智能 Java Nacos
基于 Spring AI Alibaba + Nacos 的分布式 Multi-Agent 构建指南
本文将针对 Spring AI Alibaba + Nacos 的分布式多智能体构建方案展开介绍,同时结合 Demo 说明快速开发方法与实际效果。
3485 73
|
人工智能 自然语言处理 安全
AI战略丨新一代 AI 应用: 穿透场景,释放价值
在深入理解技术特性、准确把握应用场景、科学评估实施条件的基础上,企业才能制定出符合自身实际的战略。
|
4月前
|
传感器 人工智能 机器人
科技云报到:找到真场景,抓住真需求,这样的具身智能才是好AI
科技云报到:找到真场景,抓住真需求,这样的具身智能才是好AI
221 1
|
5月前
|
传感器 人工智能 监控
建筑施工安全 “智能防线”!AI 施工监测系统,全方位破解多场景隐患难题
AI施工监测系统通过多场景识别、智能联动与数据迭代,实现材料堆放、安全通道、用电、大型设备及人员行为的全场景智能监管。实时预警隐患,自动推送告警,联动现场处置,推动建筑安全从“人工巡查”迈向“主动防控”,全面提升施工安全管理水平。
997 15
|
5月前
|
人工智能
四大公益场景,20万奖金!AI开源公益创新挑战赛邀你一起「小有可为」
四大公益场景,20万奖金!AI开源公益创新挑战赛邀你一起「小有可为」
256 8
|
4月前
|
自然语言处理 数据挖掘 关系型数据库
ADB AI指标分析在广告营销场景的方案及应用
ADB Analytic Agent助力广告营销智能化,融合异动与归因分析,支持自然语言输入、多源数据对接及场景模板化,实现从数据获取到洞察报告的自动化生成,提升分析效率与精度,推动数据驱动决策。
|
5月前
|
人工智能 边缘计算 搜索推荐
AI产品测试学习路径全解析:从业务场景到代码实践
本文深入解析AI测试的核心技能与学习路径,涵盖业务理解、模型指标计算与性能测试三大阶段,助力掌握分类、推荐系统、计算机视觉等多场景测试方法,提升AI产品质量保障能力。
|
6月前
|
存储 负载均衡 NoSQL
【赵渝强老师】Redis Cluster分布式集群
Redis Cluster是Redis的分布式存储解决方案,通过哈希槽(slot)实现数据分片,支持水平扩展,具备高可用性和负载均衡能力,适用于大规模数据场景。
456 2
|
6月前
|
存储 缓存 NoSQL
【📕分布式锁通关指南 12】源码剖析redisson如何利用Redis数据结构实现Semaphore和CountDownLatch
本文解析 Redisson 如何通过 Redis 实现分布式信号量(RSemaphore)与倒数闩(RCountDownLatch),利用 Lua 脚本与原子操作保障分布式环境下的同步控制,帮助开发者更好地理解其原理与应用。
407 6
|
7月前
|
存储 缓存 NoSQL
Redis核心数据结构与分布式锁实现详解
Redis 是高性能键值数据库,支持多种数据结构,如字符串、列表、集合、哈希、有序集合等,广泛用于缓存、消息队列和实时数据处理。本文详解其核心数据结构及分布式锁实现,帮助开发者提升系统性能与并发控制能力。

热门文章

最新文章