Java程序在K8S容器部署CPU和Memory资源限制相关设置

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
简介: 背景在k8s docker环境中执行Java程序,因为我们设置了cpu,memory的limit,所以Java程序执行时JVM的参数没有跟我们设置的参数关联,导致JVM感知到的cpu和memory是我们k8s的work node上的cpu和memory大小。

背景

在k8s docker环境中执行Java程序,因为我们设置了cpu,memory的limit,所以Java程序执行时JVM的参数没有跟我们设置的参数关联,导致JVM感知到的cpu和memory是我们k8s的work node上的cpu和memory大小。这样造成的问题是:当容器中Java程序使用内存超过memory limit时,直接造成Out of Memory错误,从而引起容器重启。JVM很多参数也是很智能的,启动时内存的分配也会根据cpu和memory进行调整,比如GC相关的参数就是动态调整的。如果容器感知到的cpu核数不对,那么对程序的性能也会造成很大的影响。

内存

Java对内存的使用有几个参数可以配置。以前的版本可以用-Xms, -Xmx来分别设置初始化Java堆大小和最大的Java堆大小。但因为Java堆大小并不等于所有可用的内存大小,所以在设置memory limit的时候会加一个值。这样避免Java使用的内存超过分配给容器的最大内存限制。这个增加的值需要一定的经验和测试来获取。

JVM后来提供了UseCGroupMemoryLimitForHeap参数来让JVM自动根据我们提供的内存限制来分配堆的大小。这样也就避免了我们人为去确定应该给堆多大的空间。只要经过测试,确定这个Java程序占用的总共空间就行了。使用方法是在java运行后面加上参数:java -XX:+UnlockExperimentalVMOptions -XX:+UseCGroupMemoryLimitForHeap ⋯

CPU

配了上面的参数,我们还没有完全解决问题。因为JVM GC相关的参数跟CPU处理器核相关联的,可使用的CPU核数越多,分配给GC的线程资源也越多。如果我们不设置正确的CPU核数给容器,那么它看到的就是整个k8s worker node的CPU个数,比如我们限制容器可使用2core,但worker node有32core。那么这个容器会给GC分配很多的线程资源,从而严重影响正常Java线程的运行。

CPU个数对JVM GC的影响

JVM提供了ActiveProcessorCount参数来设置这个值。但这个参数只在java 1.8.0_191以后版本才支持。下面我在笔记本上做了测试(total 8 cores),看看这个参数如何影响GC的参数。

Step1: 写一个hello wold程序。

root@kyle:~# cat Hello.java
public class Hello{
    public static void  main(String[] args){
        System.out.println("hello world");
}

Step2: 编译

root@kyle:~# javac Hello.java

Step3: 不加参数运行

root@kyle:~# java -XX:+PrintFlagsFinal Hello > init.txt
[Global flags]
     intx ActiveProcessorCount                      = -1                                  {product}
    uintx AdaptiveSizeDecrementScaleFactor          = 4                                   {product}
    uintx AdaptiveSizeMajorGCDecayTimeScale         = 10                                  {product}
    uintx AdaptiveSizePausePolicy                   = 0                                   {product}
    uintx AdaptiveSizePolicyCollectionCostMargin    = 50                                  {product}
…

Step4: 加不同参数值运行

root@kyle:~# java -XX:ActiveProcessorCount=1 -XX:+PrintFlagsFinal Hello > p1.txt
root@kyle:~# java -XX:ActiveProcessorCount=2 -XX:+PrintFlagsFinal Hello > p2.txt
root@kyle:~# java -XX:ActiveProcessorCount=4 -XX:+PrintFlagsFinal Hello > p4.txt
root@kyle:~# java -XX:ActiveProcessorCount=8 -XX:+PrintFlagsFinal Hello > p8.txt

Step5: 看看不同参数对GC的影响:
1个处理器跟2个处理器的比较:

 root@kyle:~# diff p1.txt p2.txt
2c2
<      intx ActiveProcessorCount                     := 1                                   {product}
---
>      intx ActiveProcessorCount                     := 2                                   {product}
304c304
<     uintx MarkSweepDeadRatio                        = 5                                   {product}
---
>     uintx MarkSweepDeadRatio                        = 1                                   {product}
311c311
<     uintx MaxHeapFreeRatio                          = 70                                  {manageable}
---
>     uintx MaxHeapFreeRatio                          = 100                                 {manageable}
335,336c335,336
<     uintx MinHeapDeltaBytes                        := 196608                              {product}
<     uintx MinHeapFreeRatio                          = 40                                  {manageable}
---
>     uintx MinHeapDeltaBytes                        := 524288                              {product}
>     uintx MinHeapFreeRatio                          = 0                                   {manageable}
388c388
<     uintx ParallelGCThreads                         = 0                                   {product}
---
>     uintx ParallelGCThreads                         = 2                                   {product}
682,683c682,683
<      bool UseParallelGC                             = false                               {product}
<      bool UseParallelOldGC                          = false                               {product}
---
>      bool UseParallelGC                            := true                                {product}
>      bool UseParallelOldGC                          = true                                {product}

2个处理器跟4个处理器的比较:

root@kyle:~# diff p2.txt p4.txt
2c2
<      intx ActiveProcessorCount                     := 2                                   {product}
---
>      intx ActiveProcessorCount                     := 4                                   {product}
59c59
<      intx CICompilerCount                          := 2                                   {product}
---
>      intx CICompilerCount                          := 3                                   {product}
388c388
<     uintx ParallelGCThreads                         = 2                                   {product}
---
>     uintx ParallelGCThreads                         = 4                                   {product}

4个处理器跟8个处理器的比较:

root@kyle:~# diff p4.txt p8.txt
2c2
<      intx ActiveProcessorCount                     := 4                                   {product}
---
>      intx ActiveProcessorCount                     := 8                                   {product}
59c59
<      intx CICompilerCount                          := 3                                   {product}
---
>      intx CICompilerCount                          := 4                                   {product}
388c388
<     uintx ParallelGCThreads                         = 4                                   {product}
---
>     uintx ParallelGCThreads                         = 8                                   {product}

不加参数跟8个处理器的比较:

root@kyle:~# diff init.txt p8.txt
2c2
<      intx ActiveProcessorCount                      = -1                                  {product}
---
>      intx ActiveProcessorCount                     := 8                                   {product}

从上面比较可以看出,不设这个参数跟设置最大参数(当前系统是8core)是一样的。2,4,8核设置只影响ParallelGCThreads, CICompilerCount。但如果只用1核的话,UseParallelGC,UseParallelOldGC都变为false,同时也会影响其它几个参数。见上面diff p1.txt p2.txt比较结果。

CPU个数对Java程序的影响

CPU个数的设置除了对JVM GC性能产生影响外,对Java的工作线程也会产生影响。以下的代码常用于Java库,它会根据CPU的个数产生工作线程。如果没有正确设置docker中的参数,对实际的程序性能会产生很大的影响。

Runtime.getRuntime().availableProcessors()

以下代码摘自aliyun-log-java-producer库,是根据可用处理器来产生相应个数的IO线程来发送loghub数据。

# ProducerConfig.java:
public class ProducerConfig {
  public static final int DEFAULT_IO_THREAD_COUNT =
      Math.max(Runtime.getRuntime().availableProcessors(), 1);

OpenJDK版本

我们运行以下命令检查JDK的版本。openjdk version "1.8.0_131"以后支持UseCGroupMemoryLimitForHeap参数,"1.8.0_191"以后才支持ActiveProcessorCount这个参数。

root@kyle:~# java -version
openjdk version "1.8.0_191"
OpenJDK Runtime Environment (build 1.8.0_191-8u191-b12-2ubuntu0.16.04.1-b12)
OpenJDK 64-Bit Server VM (build 25.191-b12, mixed mode)

改进方案

如果我们使用的JDK版本支持这2个参数,那么我们只需要在运行Java程序时把这UseCGroupMemoryLimitForHeap参数加上,同时再给ActiveProcessorCount参数赋值实际分配给容器的cpu limit就可以了。如果目前的JDK版本低于1.8.0_191,即不支持ActiveProcessorCount,针对这个情况,有2种方法可以进行:

  1. 建议升级到191以后的版本,然后根据cpu limit配置ActiveProcessorCount。
  2. 不升级jdk版本,直接设置跟ActiveProcessorCount参数相关的GC参数:比如ParallelGCThreads,CICompilerCount。如果是1.8.0_131以前的版本,可以用-Xms, -Xmx参数进行堆空间的大小分配,注意这两个参数只设置了分配给堆的大小,实际的memory limit应该比这个大。这种方案不是一个best practice,毕竟这样没有用到JVM自动适配的一些参数。最关键的,此种方法不能避免很多Java库根据availableProcessors()来做相应逻辑处理。

参考资料

  1. Assign Memory Resources to Containers and Pods
  2. Assign CPU Resources to Containers and Pods
  3. Kubernetes Demystified: Restrictions on Java Application Resources
  4. JVM 对 docker 容器 CPU 限制的兼容
  5. Java SE support for Docker CPU and memory limits
  6. 关于Jvm知识看这一篇就够了
相关实践学习
深入解析Docker容器化技术
Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。Docker是世界领先的软件容器平台。开发人员利用Docker可以消除协作编码时“在我的机器上可正常工作”的问题。运维人员利用Docker可以在隔离容器中并行运行和管理应用,获得更好的计算密度。企业利用Docker可以构建敏捷的软件交付管道,以更快的速度、更高的安全性和可靠的信誉为Linux和Windows Server应用发布新功能。 在本套课程中,我们将全面的讲解Docker技术栈,从环境安装到容器、镜像操作以及生产环境如何部署开发的微服务应用。本课程由黑马程序员提供。 &nbsp; &nbsp; 相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
相关文章
|
弹性计算 人工智能 Serverless
阿里云ACK One:注册集群云上节点池(CPU/GPU)自动弹性伸缩,助力企业业务高效扩展
在当今数字化时代,企业业务的快速增长对IT基础设施提出了更高要求。然而,传统IDC数据中心却在业务存在扩容慢、缩容难等问题。为此,阿里云推出ACK One注册集群架构,通过云上节点池(CPU/GPU)自动弹性伸缩等特性,为企业带来全新突破。
|
2月前
|
Java 虚拟化 容器
(Java)Java里JFrame窗体的基本操作(容器布局篇-1)
容器 容器,我的理解是可以包容其他东西的玩意。它可以是一个盒子,可以是一个虚拟化的物品,可只要能包裹住其他存在质体的东西,那么都可以称作是容器。例如:JPanel组件和JScollPane组件两者都是容器也是组件。 既然有容器,那么容器中的布局就必不可少了。不然不规矩的摆放物品,人类看不习惯,我也看不习惯 ???? 本篇内容,将说明java JFrame窗体里容器中几类布局。 说明:所有在JFrame窗体里的容器布局都会使用setLayout()方法,采用的布局参数都将放进这个方法里 绝对布局 调用窗体容器
106 1
|
6月前
|
存储 缓存 安全
Java 集合容器常见面试题及详细解析
本文全面解析Java集合框架,涵盖基础概念、常见接口与类的特点及区别、底层数据结构、线程安全等内容。通过实例讲解List(如ArrayList、LinkedList)、Set(如HashSet、TreeSet)、Map(如HashMap、TreeMap)等核心组件,帮助读者深入理解集合容器的使用场景与性能优化。适合准备面试或提升开发技能的开发者阅读。
108 0
|
6月前
|
缓存 Java API
Java 集合容器实操技巧与案例详解
本教程基于Java 8+新特性和现代开发实践,深入讲解Java集合容器的实操技巧。通过具体场景演示Stream API数据处理、ConcurrentHashMap并发控制、LinkedHashMap实现LRU缓存、TreeSet自定义排序等高级特性。同时涵盖computeIfAbsent优化操作、EnumMap专用集合使用、集合统计与运算(交集、并集、差集)等内容。代码示例丰富,助力掌握高效编程方法。[点击获取完整代码](https://pan.quark.cn/s/14fcf913bae6)。
84 0
|
9月前
|
Kubernetes 负载均衡 Java
k8s的出现解决了java并发编程胡问题了
Kubernetes通过提供自动化管理、资源管理、服务发现和负载均衡、持续交付等功能,有效地解决了Java并发编程中的许多复杂问题。它不仅简化了线程管理和资源共享,还提供了强大的负载均衡和故障恢复机制,确保应用程序在高并发环境下的高效运行和稳定性。通过合理配置和使用Kubernetes,开发者可以显著提高Java应用程序的性能和可靠性。
182 31
|
10月前
|
存储 安全 算法
Java容器及其常用方法汇总
Java Collections框架提供了丰富的接口和实现类,用于管理和操作集合数据。
175 2
Java容器及其常用方法汇总
|
存储 缓存 监控
Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
本文介绍了Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
1102 7
|
存储 安全 Java
Java多线程编程中的并发容器:深入解析与实战应用####
在本文中,我们将探讨Java多线程编程中的一个核心话题——并发容器。不同于传统单一线程环境下的数据结构,并发容器专为多线程场景设计,确保数据访问的线程安全性和高效性。我们将从基础概念出发,逐步深入到`java.util.concurrent`包下的核心并发容器实现,如`ConcurrentHashMap`、`CopyOnWriteArrayList`以及`BlockingQueue`等,通过实例代码演示其使用方法,并分析它们背后的设计原理与适用场景。无论你是Java并发编程的初学者还是希望深化理解的开发者,本文都将为你提供有价值的见解与实践指导。 --- ####
|
弹性计算 Kubernetes Perl
k8s 设置pod 的cpu 和内存
在 Kubernetes (k8s) 中,设置 Pod 的 CPU 和内存资源限制和请求是非常重要的,因为这有助于确保集群资源的合理分配和有效利用。你可以通过定义 Pod 的 `resources` 字段来设置这些限制。 以下是一个示例 YAML 文件,展示了如何为一个 Pod 设置 CPU 和内存资源请求(requests)和限制(limits): ```yaml apiVersion: v1 kind: Pod metadata: name: example-pod spec: containers: - name: example-container image:
1576 2
|
运维 JavaScript Linux
容器内的Nodejs应用如何获取宿主机的基础信息-系统、内存、cpu、启动时间,以及一个df -h的坑
本文介绍了如何在Docker容器内的Node.js应用中获取宿主机的基础信息,包括系统信息、内存使用情况、磁盘空间和启动时间等。核心思路是将宿主机的根目录挂载到容器,但需注意权限和安全问题。文章还提到了使用`df -P`替代`df -h`以获得一致性输出,避免解析错误。
515 1

相关产品

  • 容器服务Kubernetes版